平面. ---------------------------4分(Ⅱ)方法一: 查看更多

 

题目列表(包括答案和解析)

(2013•聊城一模)某校高三年级文科共有800名学生参加了学校组织的模块测试,教务处为了解学生学习情况,采用系统抽样的方法,从这800名学生的数学成绩中抽出若干名学生的数学成绩.
并制成如下频率分布表:
分组 频数 频率
[70,80) 4 0.04
[80,80) 6 0.06
[90,100) 20 0.20
[100,110) 22 0.22
[110,120) 18 b
[120,130) a 0.15
[130,140) 10 0.10
[140,150) 5 0.05
合计 c 1
(I)李明同学本次数学成绩为103分,求他被抽取的概率P;
(Ⅱ)为了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并从这6名学生中再随机抽取2名,与心理老师面谈,求第七组至少有一名学生与心理老师面谈的概率’
(Ⅲ)估计该校本次考试的数学平均分.

查看答案和解析>>

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:
平面几何选讲 极坐标与参数方程 不等式选讲 合计
男同学(人数) 12 4 6 22
女同学(人数) 0 8 12 20
合计 12 12 18 42
(1)在统计结果中,如果把平面几何选讲和极坐标与参数方程称为几何类,把不等式选讲称为代数类,我们可以得到如下2×2列联表:
几何类 代数类 合计
男同学(人数) 16 6 22
女同学(人数) 8 12 20
合计 24 18 42
据此统计你是否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?
(2)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知这名学委和两名数学科代表都在选做“不等式选讲”的同学中.
①求在这名学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽取到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

(2013•沈阳二模)在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:
平面几何选讲 极坐标与参数方程 不等式选讲 合计
男同学(人数) 12 4 6 22
女同学(人数) 0 8 12 20
合计 12 12 18 42
(1)在统计结果中,如果把平面几何选讲和极坐标与参数方程称为几何类,把不等式选讲称为代数类,我们可以得到如下2×2列联表:
几何类 代数类 合计
男同学(人数) 16 6 22
女同学(人数) 8 12 20
合计 24 18 42
据此统计你是否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?
(2)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知这名学委和两名数学科代表都在选做“不等式选讲”的同学中.
①求在这名学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽取到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

(本小题满分12分)

某校共有800名学生,高三一次月考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:

组号

合计

分组

频数

4

6

20

22

18

10

5

频率

0.04

0.06

0.20

0.22

0.15

0.10

0.05

1

(Ⅰ) 李明同学本次数学成绩为103分,求他被抽中的概率

(Ⅱ) 为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并在这6名学生中在随机抽取2名由心理老师张老师负责面谈,求第七组至少有一名学生与张老师面谈的概率;

(Ⅲ) 估计该校本次考试的数学平均分。

 

查看答案和解析>>


同步练习册答案