题目列表(包括答案和解析)
C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:
和直线
,
(1)求圆O和直线
的直角坐标方程;(2)当
时,求直线
与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数![]()
和
,不等式
恒成立,试求实数
的取值范围.
C
[解析] 由基本不等式,得ab≤
=
=
-ab,所以ab≤
,故B错;
+
=
=
≥4,故A错;由基本不等式得
≤
=
,即
+
≤
,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D错.故选C.
.定义域为R的函数
满足
,且当
时,
,则当
时,
的最小值为( )
(A)
(B)
(C)
(D)![]()
.过点
作圆
的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条
一、选择题(本大题共10小题,每题5分,共50分)
1.C 2.A 3.B 4.D 5.B
6.B 7.C 8.D 9.D 10.A
二、填空题(本大题共7小题,每题4分,共28分)
11.2 12.45 13.
14.
15.1 16.144 17.
三、解答题(本大题共5小题,第18―20题各14分,第21、22题各15分,共72分)
18.(1)因为
(4分)
所以
(Ⅱ)由(I)得,
(10分)
因为
所以
,所以
(12分)
因此,函数
的值域为
。(14分)
19.(I)因为
,所以
平面
。 (3分)
又因为
平面
所以
①(5分)
在
中,
,由余弦定理,
得
因为
,所以
,即
。② (7分)
由①,②及
,可得
平面
(8分)
(Ⅱ)方法一;
在
中,过
作
于
,则
,所以
平面
在
中,过
作
于
,连
,则
平面
,
所以
为二面角
的平面角 (11分)
在
中,求得
,
在
中,求得
,
所以
所以
。
因此,所求二面角
的大小的余弦值为
。
方法二:
如图建立空间直角坐标系
(9分)
则

设平面
的法向量为
,
则
所以
,取
,
则
(11分)
又设平面
的法向量为
,
则
,取
,则
(13分)
所以,
因此,所求二面角
的大小余弦值为
。
20.(I)
(6分)
(Ⅱ)



1
2
3
4
5






(14分)
21.(I)由题意得
(3分)
解得
(5分)
所以椭圆方程为
(6分)
(Ⅱ)直线
方程为
,则
的坐标为
(7分)
设
则
,
直线
方程为
令
,得
的横坐标为
① (10分)
又
得
得
, (12分)
代入①得
, (14分)
得
,
为常数4 (15分)
22.(I)
(2分)
由于
,故尝
时,
,所以
, (4分)
故函数
在
上单调递增。 (5分)
(Ⅱ)令
,得到
(6分)
的变化情况表如下: (8分)


0


一
0
+


极小值

因为函数
有三个零点,所以
有三个根,
有因为当
时,
,
所以
,故
(10分)
(Ⅲ)由(Ⅱ)可知
在区间
上单调递减,在区间
上单调递增。
所以
(11分)


记
则
(仅在
时取到等号),
所以
递增,故
,
所以
(13分)
于是
故对
,所以
(15分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com