③ 顶点在原点.对称轴是坐标轴.且经过点的抛物线方程只能是, 查看更多

 

题目列表(包括答案和解析)

椭圆的中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点 B 与两焦点 F1、F2组成的三角形的周长为 4+2
3
且∠F1BF2=
3
,则椭圆的方程是
x2
4
+y2=1
x2+
y2
4
=1
x2
4
+y2=1
x2+
y2
4
=1

查看答案和解析>>

在直角坐标系xOy中,一直角三角形ABC,∠ C=90°,B、C在x轴上且关于原点O对称,D在边BC上,BD=3DC,△ABC的周长为12.若一双曲线E以B、C为焦点,且经过A、D两点.

(Ⅰ)求双曲线E的方程;

(Ⅱ)若过一点P(m,0)(m为常数)的斜率存在的直线l与双曲线E交于不同于双曲线顶点的两点M、N,且,问在x轴上是否存在定点G,使?若存在,求出所有这样的定点G的坐标;若不存在,请说明理由.

查看答案和解析>>

已知中心在坐标原点,坐标轴为对称轴的椭圆C和等轴双曲线C1,点(
5
,-1)
在曲线C1上,椭圆C的焦点是双曲线C1的顶点,且椭圆C与y轴正半轴的交点M到直线x-
3
y-2=0
的距离为4.
(Ⅰ)求双曲线C1和椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C相交于P、Q两点,A、B是椭圆上位于直线PQ两侧的两动点,若直线AB的斜率为
1
2
,求四边形APBQ面积的最大值.

查看答案和解析>>

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;

⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

 

查看答案和解析>>

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;
⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

查看答案和解析>>


同步练习册答案