的条件的一个实数对.试构造一个定义在.且上的函数.使当时..当时.取得最大值的自变量的值构成以为首项的等差数列. 查看更多

 

题目列表(包括答案和解析)

 如果一个实数数列满足条件:为常数,),则称这一数列 “伪等差数列”, 称为“伪公差”。给出下列关于某个伪等差数列的结论:

①对于任意的首项,若<0,则这一数列必为有穷数列;

②当>0, >0时,这一数列必为单调递增数列;

③这一数列可以是一个周期数列;

④若这一数列的首项为1,伪公差为3,可以是这一数列中的一项;

⑤若这一数列的首项为0,第三项为-1,则这一数列的伪公差可以是

其中正确的结论是­­________________.

 

查看答案和解析>>

 (本题满分18分)(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知函数图像上的两点,横坐标为的点满足为坐标原点).

(1)求证:为定值;

(2)若

值;

(3)在(2)的条件下,若为数列的前项和,若对一切都成立,试求实数的取值范围.

查看答案和解析>>

(本题满分15分)设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足

   (I)证明:函数是集合M中的元素;

   (II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。 

(III)若集合M中的元素具有下面的性质:若的定义域为D,则对于任意[m,n],都存在,使得等式成立。试用这一性质证明:对集合M中的任一元素,方程只有一个实数根。

查看答案和解析>>

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)

在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.

(1)若,求方程在区间内的解集;

(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;

(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.
(1)若,求方程在区间内的解集;
(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>


同步练习册答案