精英家教网 > 高中数学 > 题目详情

(本题满分15分)设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足

   (I)证明:函数是集合M中的元素;

   (II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。 

(III)若集合M中的元素具有下面的性质:若的定义域为D,则对于任意[m,n],都存在,使得等式成立。试用这一性质证明:对集合M中的任一元素,方程只有一个实数根。

(Ⅰ)  见解析  (Ⅱ) 见解析  (Ⅲ)见解析


解析:

(I)证明:因为,又因为当x=0时,,所以方程有实数根0。

    所以函数是集合M中的元素。        ………………4分

  (II)证明:

[m,n] 

又,

也就是

………………9分

(III)假设方程f(x)-x=0存在两个实数根不妨设,根据题意存在数

        使得等式成立。

        因为

        与已知矛盾,所以方程只有一个实数根。……15分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分15分)设函数是奇函数,(1)求的值;(2)若,试求不等式的解集;(3)若,且上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题

(本题满分15分)设函数

(Ⅰ)若函数上单调递增,在上单调递减,求实数的最大值;

(Ⅱ)若对任意的都成立,求实数的取值范围.

注:为自然对数的底数.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三下学期2月联考理科数学 题型:解答题

(本题满分15分)设,函数.

(Ⅰ)当时,求函数的单调增区间;

(Ⅱ)若时,不等式恒成立,实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市高三上学期第三次统练文科数学 题型:解答题

(本题满分15分)设函数

(1)当时,取得极值,求的值;

(2)若内为增函数,求的取值范围;

(3)设,是否存在正实数,使得对任意,都有成立?

若存在,求实数的取值范围;若不存在,请说明理由.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省高三年级随堂练习数学试卷 题型:解答题

(本题满分15分)

设函数.

(Ⅰ)当时,解不等式:

(Ⅱ)求函数的最小值;

(Ⅲ)求函数的单调递增区间.

 

查看答案和解析>>

同步练习册答案