(本题满分15分)设,函数.
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)若时,不等式恒成立,实数的取值范围.
解:(Ⅰ)当时,
………2分
当时,,在内单调递增;
当时,恒成立,故在内单调递增;
的单调增区间为。 …………6分
(Ⅱ)①当时,,
,恒成立,在上增函数。
故当时,。 …………8分
②当时,,
(Ⅰ)当,即时,在时为正数,所以在区间上为增函数。故当时,,且此时 …………10分
(Ⅱ)当,即时,在时为负数,在时为正数,所以在区间上为减函数,在上为增函数。故当时,,且此时。 …………12分
(Ⅲ)当,即时,在进为负数,所以在区间上为减函数,故当时,。 …………14分
所以函数的最小值为。
由条件得此时;或,此时;或,此时无解。
综上,。 …………15分
【解析】略
科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题
(本题满分15分)设函数.
(Ⅰ)若函数在上单调递增,在上单调递减,求实数的最大值;
(Ⅱ)若对任意的,都成立,求实数的取值范围.
注:为自然对数的底数.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省台州市高三上学期第三次统练文科数学 题型:解答题
(本题满分15分)设函数.
(1)当时,取得极值,求的值;
(2)若在内为增函数,求的取值范围;
(3)设,是否存在正实数,使得对任意,都有成立?
若存在,求实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江苏省高三年级随堂练习数学试卷 题型:解答题
(本题满分15分)
设函数.
(Ⅰ)当时,解不等式:;
(Ⅱ)求函数在的最小值;
(Ⅲ)求函数的单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com