③时.单调递增. .所以 查看更多

 

题目列表(包括答案和解析)

设函数

(Ⅰ) 当时,求的单调区间;

(Ⅱ) 若上的最大值为,求的值.

【解析】第一问中利用函数的定义域为(0,2),.

当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);

第二问中,利用当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

解:函数的定义域为(0,2),.

(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);

(2)当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

 

查看答案和解析>>

给出以下五个命题,所有正确命题的序号为________

①两个向量夹角的范围与两条异面直线的夹角的范围一致;

a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件;

③函数的定域为R,则k的取值范围是0<k≤1;

④要得到y=3sin(2x+)的图象,只需将y=3sin2x的图象左移个单位;

a>0时,f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的最大值是3.

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

(本小题满分12分)

已知向量,函数

(1)求函数的最小正周期以及单调递增区间;

(2)若时, 求的值域;

(3)求方程内的所有实数根之和.

 

查看答案和解析>>

(本小题满分12分)
已知向量,函数
(1)求函数的最小正周期以及单调递增区间;
(2)若时, 求的值域;
(3)求方程内的所有实数根之和.

查看答案和解析>>


同步练习册答案