查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分别为棱AB、BC的中点, M为棱AA1­上的点,二面角MDEA为30°.

   (1)求MA的长;w.w.w.k.s.5.u.c.o.m      

   (2)求点C到平面MDE的距离。

查看答案和解析>>

(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙两人不相邻的站法有多少种?

(3)求甲不站最左端且乙不站最右端的站法有多少种 ?

查看答案和解析>>

(本小题满分12分)

某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?

 

查看答案和解析>>

(本小题满分12分)

已知a,b是正常数, ab, xy(0,+∞).

   (1)求证:,并指出等号成立的条件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的结论求函数的最小值,并指出取最小值时相应的x 的值.

查看答案和解析>>

(本小题满分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR x?y=5,求证k≥1.

查看答案和解析>>

一、选择题(本大题共12小题,每小题4分,共48分)

1.B    2.A    3.B    4.A     5.D     6.C

7.C    8.A    9.B    10.D    11.D   12.B   

二、填空题(本大题共4小题,每小题4分,共16分)

13.   14.增函数的定义     15.与该平面平行的两个平面    16.

三、解答题(本大题共3小题,每小题12分,共36分)

17.(本小题满分12分)

解:(Ⅰ)由,可得

由题设可得     即

解得

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由题意得

所以

,得

 

 

所以函数的单调递增区间为.┄┄┄┄┄┄┄┄┄┄12分

18A. (本小题满分12分)

解:(Ⅰ)

.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根据计算结果,可以归纳出 .

时,,与已知相符,归纳出的公式成立.

假设当)时,公式成立,即

那么,

所以,当时公式也成立.

综上,对于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小题满分12分)

解:(Ⅰ),因为

所以

,解得

同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根据计算结果,可以归纳出 .

时,,与已知相符,归纳出的公式成立.

假设当)时,公式成立,即.

可得,.

.

所以.

即当时公式也成立.

综上,对于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小题满分12分)

(Ⅰ)解:的定义域为

的导数.

,解得;令,解得.

从而单调递减,在单调递增.

所以,当时,取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分

(Ⅱ)依题意,得上恒成立,

即不等式对于恒成立.

.

时,因为

上的增函数,   所以 的最小值是

从而的取值范围是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小题满分12分)

解:(Ⅰ)由于

时,

,可得.

时,

可知

所以函数的单调减区间为. ………………………………………………6分

(Ⅱ)设

时,

,可得,即

,可得.

可得为函数的单调增区间,为函数的单调减区间.

时,

所以当时,

可得为函数的单调减区间.

所以函数的单调增区间为,单调减区间为.

函数的最大值为

    要使不等式对一切恒成立,

对一切恒成立,

可得的取值范围为. ………………………………………………12分

 


同步练习册答案