C. 查看更多

 

题目列表(包括答案和解析)


C.选修4—4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数),判断直线和圆的位置关系.

查看答案和解析>>

C选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系中,求过椭圆为参数)的右焦点且与直线为参数)平行的直线的普通方程。

查看答案和解析>>

C.(选修4—4:坐标系与参数方程)

在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正

半轴建立平面直角坐标系,直线的参数方程为为参数),求直线

得的弦的长度.

 

查看答案和解析>>

C(坐标系与参数方程选做题)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为为参数),直线l的极坐标方程为.点P在曲线C上,则点P到直线l的距离的最小值为                

 

查看答案和解析>>

C.选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程是是参数),若以为极点,轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线的极坐标方程.

 

 

 

查看答案和解析>>

一、选择题(本大题共12小题,每小题4分,共48分)

1.B    2.A    3.D      4.C     5.D    6.C

7.A    8.C    9.B      10.C    11.A   12.B   

二、填空题(本大题共4小题,每小题4分,共16分)

13.

14.

 

 

 

 

15. 增函数的定义

16. 与该平面平行的两个平面

三、解答题(本大题共3小题,每小题12分,共36分)

17.(本小题满分12分)

解:(Ⅰ)涉及两个变量,年龄与脂肪含量.

因此选取年龄为自变量,脂肪含量为因变量

作散点图,从图中可看出具有相关关系.             

┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)的回归直线方程为

.        

时,

时,

所以岁和岁的残差分别为.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18A. (本小题满分12分)

证明:由于

所以只需证明

展开得,即

所以只需证

因为显然成立,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小题满分12分)

证明:(Ⅰ)因为,所以

由于函数上的增函数,

所以

同理,

两式相加,得.┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)逆命题:

,则

用反证法证明

假设,那么

所以

这与矛盾.故只有,逆命题得证.

┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小题满分12分)

解:(Ⅰ)由于,且

所以当时,得,故

从而.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)数列不可能为等差数列,证明如下:

若存在,使为等差数列,则

,解得

于是

这与为等差数列矛盾.所以,对任意,数列都不可能是等差数列.

┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小题满分12分)

解:(Ⅰ)

.┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由(Ⅰ)可得

猜想:是公比为的等比数列.

证明如下:因为

,所以

所以数列是首项为,公比为的等比数列.┄┄┄┄┄┄┄┄┄┄┄┄12分

 

 

 


同步练习册答案