(Ⅱ) 若数列{an}的首项为a1=1.(nÎN+).求{an}的通项公式an, 查看更多

 

题目列表(包括答案和解析)

(2012•扬州模拟)已知等差数列{an}的各项均为正数,其前n项和为Sn,首项a1=1.
(Ⅰ)若
S1
+
S3
=2
S2
,求S5
(Ⅱ)若数列{an}中存在两两互异的正整数m、n、p同时满足下列两个条件:①m+p=2n;②
Sm
+
Sp
=2
Sn
,求数列的通项an
(Ⅲ)对于(Ⅱ)中的数列{an},设bn=3•(
1
2
)an
(n∈N*),集合Tn={bi•bj|1≤i≤j≤n,i,j∈N*},记集合Tn中所有元素之和Bn,试问:是否存在正整数n和正整数k,使得不等式
1
bnBn-k
+
1
k-bn+1Bn+1
>0
成立?若存在,请求出所有n和k的值;若不存在,请说明理由.

查看答案和解析>>

若数列{an}的前四项为2,0,2,0,则这个数列的通项公式不能是(  )

查看答案和解析>>

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

(2012•黄浦区一模)已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求证数列{bn}是等比数列;
(2)已知数列{cn}满足cn=
an3n
(n∈N*),试建立数列{cn}的递推公式(要求不含an或bn);
(3)若数列{an}的前n项和为Sn,求Sn

查看答案和解析>>

(2012•丰台区一模)已知函数f(x)=x2+x,f'(x)为函数f(x)的导函数.
(Ⅰ)若数列{an}满足an+1=f'(an),且a1=1,求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=b,bn+1=f(bn).
(ⅰ)是否存在实数b,使得数列{bn}是等差数列?若存在,求出b的值;若不存在,请说明理由;
(ⅱ)若b>0,求证:
n
i=1
bi
bi+1
1
b

查看答案和解析>>

一、选择题(本大题共10小题,每小题5分,共50分)

   1~5  C B D C D     6~10  A C A B B

二、填空题(本大题共6小题,每小题4分,共24分)

11. ;      12 . ;       13.  31;  

14. ;       15. ;             16.-,0 .

三、解答题(本大题共6小题,共76分)

17.(本题满分13分)

解:(Ⅰ)当a=2时,A=,          …………………………2分

B=                            …………………………4分

∴ AB=                      …………………………6分

(Ⅱ)∵(a2+1)-a=(a-)2>0,即a2+1>a

∴B={x|a<x<a2+1}                            ……………………7分

①当3a+1=2,即a=时A=Φ,不存在a使BA      ……………………8分

②当3a+1>2,即a>时A={x|2<x<3a+1}

由BA得:2≤a≤3             …………………10分

③当3a+1<2,即a<时A={x|3a+1<x<2}

由BA得-1≤a≤-                  …………………12分

综上,a的范围为:[-1,-]∪[2,3]                        …………………13分

18.(本题满分13分)

解:(Ⅰ)由………4分

的值域为[-1,2]           ……………………7分

(Ⅱ)∵

                   ………………10分

………………13分

19. (本题满分13分)

解:(Ⅰ) ,              ……………………2分

在公共点处的切线相同

由题意 

                             ……………………4分

得:,或(舍去) 

即有                 ……………………6分

(Ⅱ)设,……………………7分

            ……………………9分

x<0,x>0

为减函数,在为增函数,             ……………………11分

于是函数上的最小值是:F(a)=f(a)-g(a)=0     ……………………12分

故当时,有

所以,当时,                            ……………………13分

20. (本题满分13分)

解:(Ⅰ)选取的5只恰好组成完整“奥运吉祥物”的概率

                         ………………5分

(Ⅱ)                         …………………6分           

                                      …………10分

ξ的分布列为:

ξ

10

8

6

4

P

                                                                                              

                         …………13分

21.(本题满分12分)

解:(Ⅰ)∵, ∴     …………………………1分

由y=解得:              …………………………2分

                    ………………………3分

(Ⅱ)由题意得:         …………………………4分

                   

∴{}是以=1为首项,以4为公差的等差数列. …………………………6分

,∴.          ………………………7分

(Ⅲ)∴………8分

,∴ {bn}是一单调递减数列.      ………………………10分

,要使,则 ,∴

又kÎN*  ,∴k³8 ,∴kmin=8

即存在最小的正整数k=8,使得                 ……………………12分

22.(本题满分12分)

解:(Ⅰ)由余弦定理得:   ……1分

即16=

所以

  ……………………………………………4分

(当动点P与两定点A,B共线时也符合上述结论)

所以动点P的轨迹为以A,B为焦点,实轴长为的双曲线

所以,轨迹G的方程为        …………………………………………6分

(Ⅱ)假设存在定点C(m,0),使为常数.

①当直线l不与x轴垂直时,设直线l的方程为

   …………………………………………7分

由题意知,

,则  …………………8分

于是

             ………………9分

要是使得 为常数,当且仅当,此时 ………………11分

②当直线l与x轴垂直时,,当.

 故,在x轴上存在定点C(1,0) ,使得 为常数. …………………………12分

 

 

 


同步练习册答案