题目列表(包括答案和解析)
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
在△
中,∠
,∠
,∠
的对边分别是
,且
.
(1)求∠
的大小;(2)若
,
,求
和
的值.
【解析】第一问利用余弦定理得到
第二问
(2) 由条件可得 ![]()
将
代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
已知中心在坐标原点,焦点在
轴上的椭圆C;其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
第二问中,
假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求椭圆C的标准方程为![]()
(Ⅱ) 假设存在这样的直线
,设
,MN的中点为![]()
因为|ME|=|NE|所以MN
EF所以![]()
(i)其中若
时,则K=0,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得,![]()
,得
……② ……………………9分
则
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
综上(i)(ii)可知,存在这样的直线
,其斜率k的取值范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com