精英家教网 > 高中数学 > 题目详情

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

【答案】

 (Ⅰ)    (Ⅱ)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在坐标原点的椭圆经过直线x-2y-4=0与坐标轴的两个交点,则该椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,
( I)求椭圆C的方程;
( I I)问是否存在直线l:y=
32
x+t
,使直线l与椭圆C有公共点,且原点到直线l的距离为4?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丽水一模)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=
1
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)与圆(x+1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足
OM
+
ON
OC
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知中心在坐标原点焦点在x轴上的椭圆C,其长轴长等于4,离心率为
2
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点E(0,1),问是否存在直线l:y=kx+m与椭圆C交于M,N两点,且|ME|=|NE|?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点的双曲线C的焦距为6,离心率等于3,则双曲线C的标准方程为
 

查看答案和解析>>

同步练习册答案