(Ⅰ)求平面与平面所成锐二面角的大小, 查看更多

 

题目列表(包括答案和解析)

如图,平面PAC⊥平面ABC,AC⊥BC,△PAC为等边三角形,PE∥CB,M,N分别是线段AE,AP上的动点,且满足:
AM
AE
=
AN
AP
=λ(0<λ<1).
(Ⅰ)求证:MN∥平面ABC;
(Ⅱ)求λ的值,使得平面ABC与平面MNC所成的锐二面角的大小为45°.

查看答案和解析>>

精英家教网如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点.
(I)证明:PQ∥平面ACD;
(II)求异面直线AE与BC所成角的余弦值;
(III)求平面ACD与平面ABE所成锐二面角的大小.

查看答案和解析>>

一个多面体的直观图及三视图分别如图1和图2所示(其中正视图和侧视图均为矩形,俯视图是直角三角形),M、N分别是AB1、A1C1的中点,MN⊥AB1


(Ⅰ)求实数a的值并证明MN∥平面BCC1B1
(Ⅱ)在上面结论下,求平面AB1C1与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

一个多面体的直观图及三视图分别如图1和图2所示(其中正视图和侧视图均为矩形,俯视图是直角三角形),M、N分别是AB1、A1C1的中点,MN⊥AB1


(Ⅰ)求实数a的值并证明MN∥平面BCC1B1
(Ⅱ)在上面结论下,求平面AB1C1与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=90°,P、Q分别为DE、AB的中点。
(1)求证:PQ∥平面ACD;
(2)求几何体B-ADE的体积;
(3)求平面ADE与平面ABC所成锐二面角的正切值。

查看答案和解析>>


同步练习册答案