四棱锥P―ABCD中.PA⊥面ABCD.PA=AB=BC=2.E为PA中点.过E作平行于底面的面EFGH分别与另外三条侧棱交于F.G.H.已知底面ABCD为直角梯形.AD//BC.AB⊥AD.∠BCD=135° (1)求异面直线AF.BG所成的角的大小, (2)设面APB与面CPD所成的锐二面角的大小为θ.求cosθ.(解)由题意可知.AP.AD.AB两两垂直. 可建立空间直角坐标系A―xyz.由平面几何知识知:AD=4.D. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

查看答案和解析>>

(理科)如图,在棱长为1的正方体A'C中,过BD及B'C'的中点E作截面BEFD交C'D'于F.
(1)求截面BEFD与底面ABCD所成锐二面角的大小;
(2)求四棱锥A'-BEFD的体积.

查看答案和解析>>

如图所示,四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是菱形,∠BAD=60°,E为PC的中点,
(1)求证:PA∥平面BDE;
(2)求证:PB⊥AD;
(3)(文科)求三棱锥C-PDB的体积.
(3)(理科) 求直线PC与平面ABCD所成角的正切值.

查看答案和解析>>

(2009•虹口区一模)如图,正四棱锥V-ABCD的高和底面的边长均相等,E是棱VB的中点.
(1)求证:AC⊥VD;
(2)(文科)求:异面直线CE和VD的夹角大小;
     (理科)求:二面角E-AC-B的大小.

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明CD⊥AE;
(2)证明PD⊥平面ABE;
(3)求二面角A-PD-C的正切值.(本小题理科学生做,文科学生不做)

查看答案和解析>>


同步练习册答案