(1)证明:当n=1时.a1=>2.结论成立------------假设n=k不等式ak>2成立 查看更多

 

题目列表(包括答案和解析)

13、用数学归纳法证明:当n∈N*时,1+2+22+…+25n-1是31的倍数时,当n=1时,原式的值为
31
;从k到k+1时需增添的项是
25k+25k+1+25k+2+25k+3+25k+4

查看答案和解析>>

已知数列{an}的前n项的和为Sn,且对任意的正整数n都有Sn=
an+n2
2

(1)求a1,a2及数列{an}的通项公式;
(2)若数列{bn}满足:b1=1,当n≥2时,bn=an2(
1
a12
+
1
a22
+…+
1
an-12
)
,证明:当n≥2时,
bn+1
(n+1)2
-
bn
n2
=
1
n2

(3)在(2)的条件下,试比较(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
与4的大小关系.

查看答案和解析>>

已知数列{αn}的前n项和为Sn,α1=l,Sn=(2n-1)αn(n∈N*).
(1)证明:数列{αn}是等比数列;
(2)记Tn=n×α1+(n-1)α2+(n-2)α3+…+2×αn-1+1×αn(n∈N*),求L;
(3)证明:当n≥2(n∈N*)时,(1+α1)(1+α2)×…×(1+αn)≤6(1-2αn+1).

查看答案和解析>>

设函数f(x)=x-(x+1)ln(x+1)(x>-1).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)试通过研究函数g(x)=
ln(1+x)
x
(x>0)的单调性证明:当n>m>0时,(1+n)m<(1+m)n
(Ⅲ)证明:当n>2013,且x1,x2,x3,…,xn均为正实数,x1+x2+x3+…+xn=1 时,(
x
2
1
1+x1
+
x
2
2
1+x2
+
x
2
3
1+x3
+…+
x
2
n
1+xn
)
1
n
(
1
2014
)
1
2013

查看答案和解析>>

设f(x)=
ax2+bx+1
x+c
(a>0)为奇函数,且|f(x)|min=2
2
,数列{an}与{bn}满足如下关系:a1=2,an+1=
f(an)-an
2
bn=
an-1
an+1

(1)求f(x)的解析表达式;
(2)证明:当n∈N+时,有bn(
1
3
)n

查看答案和解析>>


同步练习册答案