题目列表(包括答案和解析)
|
| α |
|
| β |
|
| π |
| 4 |
| ||
| 2 |
|
设点
是抛物线![]()
![]()
的焦点,
是抛物线
上的
个不同的点(![]()
).
(1) 当
时,试写出抛物线
上的三个定点
、
、
的坐标,从而使得
;
(2)当
时,若
,
求证:
;
(3) 当
时,某同学对(2)的逆命题,即:
“若
,则
.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数
,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.
由抛物线定义得到
第二问设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
第三问中①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;![]()
解:(1)抛物线
的焦点为
,设
,
分别过
作抛物线
的准线
的垂线,垂足分别为
.由抛物线定义得
![]()
![]()
因为
,所以
,
故可取![]()
![]()
满足条件.
(2)设
,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
![]()
![]()
又因为![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
时,抛物线
的焦点为
,
设
,
分别过![]()
作抛物线
的准线
垂线,垂足分别为![]()
.由抛物线定义得
![]()
![]()
![]()
![]()
,
则
,不妨取
;![]()
;![]()
;
,
则![]()
![]()
,![]()
![]()
.
故
,
,
,
是一个当
时,该逆命题的一个反例.(反例不唯一)
② 设
,分别过
作
抛物线
的准线
的垂线,垂足分别为
,
由
及抛物线的定义得
,即
.
因为上述表达式与点
的纵坐标无关,所以只要将这
点都取在
轴的上方,则它们的纵坐标都大于零,则
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(说明:本质上只需构造满足条件且
的一组
个不同的点,均为反例.)
③ 补充条件1:“点
的纵坐标
(
)满足
”,即:
“当
时,若
,且点
的纵坐标
(
)满足
,则
”.此命题为真.事实上,设
,
分别过
作抛物线
准线
的垂线,垂足分别为
,由
,
及抛物线的定义得
,即
,则
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命题为真.
补充条件2:“点
与点![]()
为偶数,
关于
轴对称”,即:
“当
时,若
,且点
与点![]()
为偶数,
关于
轴对称,则
”.此命题为真.(证略)
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
(1)(本小题满分7分)
选修4-4:矩阵与变换
已知矩阵
,A的一个特征值
,其对应的特征向量是
.
(Ⅰ)求矩阵
;
(Ⅱ)求直线
在矩阵M所对应的线性变换下的像的方程
(2)
(本小题满分7分)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
,求直线l与曲线C相交所成的弦的弦长.
((3)(本小题满分7分)
选修4-5:不等式选讲 解不等式∣2x-1∣<∣x∣+1
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;
(Ⅱ)
表示开始第4次发球时乙的得分,求
的期望。
【解析】解:
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com