解法二:由于小球每次遇到黑色障碍物时.有一次向左和两次向右或两次向左和一次向右下落时小球将落入袋. 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

精英家教网将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在整个下落过程中它将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是
12

(Ⅰ)求小球落入B袋中的概率P(B);
(Ⅱ)在容器入口处依次放入2个小球,记落入A袋中的小球个数为ξ,试求ξ的分布列和ξ的数学期望Eξ.

查看答案和解析>>

将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是
12

(1)求小球落入A袋中的概率P(A);
(2)在容器入口处依次放入4个小球,记 ξ为落入A袋中的小球个数,试求ξ=3的概率和ξ的数学期望 Eξ;
(3)如果规定在容器入口处放入1个小球,若小球落入A袋奖10 元,若小球落入B袋罚4元,试求所得奖金数η的分布列和数学期望,并回答你是否参加这个游戏?

查看答案和解析>>

(2011•丹东模拟)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,…,依此类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是
1
2
.记小球遇到第n行第m个障碍物(从左至右)上顶点的概率为P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表达式(不必证明);
(Ⅱ)已知f(x)=
4-x,1≤x≤3
x-3,3<x≤6
,设小球遇到第6行第m个障碍物(从左至右)上顶点时,得到的分数为ξ=f(m),试求ξ的分布列及数学期望.

查看答案和解析>>

精英家教网将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是
12

(Ⅰ)求小球落入A袋中的概率P(A);
(Ⅱ)在容器入口处依次放入4个小球,记X为落入A袋中小球的个数,试求X=3的概率和X的数学期望EX.

查看答案和解析>>


同步练习册答案