精英家教网 > 高中数学 > 题目详情
(2011•丹东模拟)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,…,依此类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是
1
2
.记小球遇到第n行第m个障碍物(从左至右)上顶点的概率为P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表达式(不必证明);
(Ⅱ)已知f(x)=
4-x,1≤x≤3
x-3,3<x≤6
,设小球遇到第6行第m个障碍物(从左至右)上顶点时,得到的分数为ξ=f(m),试求ξ的分布列及数学期望.
分析:(I)根据已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是
1
2
,小球遇到第n行第m个障碍物(从左至右)上顶点的概率为P(n,m),可得P(4,1),P(4,2),可以猜想P(n,m);            
(II)ξ的可能取值为3,2,1,求出相应概率,可得分布列,从而可得期望.
解答:解:(I)根据已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是
1
2
,小球遇到第n行第m个障碍物(从左至右)上顶点的概率为P(n,m),可得P(4,1)=
C
0
3
(
1
2
)
3
=
1
8
,P(4,2)=
C
1
3
(
1
2
)
3
=
3
8

猜想P(n,m)=
C
m-1
n-1
(
1
2
)
n-1
;                        …(6分)
(II)ξ的可能取值为3,2,1,…(7分)
P(ξ=3)=P(6,1)+P(6,6)=
1
16
,P(ξ=2)=P(6,2)+P(6,5)=
C
1
5
(
1
2
)
5
=
5
16
,P(ξ=1)=P(6,3)+P(6,4)=
5
8

分布列为:
ξ 3 2 1
P
1
16
5
16
5
8
…(10分)
Eξ=3×
1
16
+2×
5
16
+1×
5
8
=
23
16
.                   …(12分)
点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,解题的关键是确定变量的取值,求出相应的概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•丹东模拟)设l、m是两条不同的直线,α、β是两个不同的平面,给出下列5个命题:
①若m⊥α,l⊥β,则l∥α;
②若m⊥α,l?β,l∥m,则α⊥β;
③若α∥β,l⊥α,m∥β,则l⊥m;
④若α∥β,l∥α,m?β,则l∥m;
⑤若α⊥β,α∩β=l,m⊥l,则m⊥β.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丹东模拟)选修4-1:几何证明选讲
如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.
(Ⅰ)求证:CD2=DE•DB;
(Ⅱ)若CD=2
3
,O到AC的距离为1,求⊙O的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丹东模拟)选修4-5:不等式选讲
设正有理数x是
3
的一个近似值,令y=1+
2
1+x

(Ⅰ)若x
3
,求证:y<
3

(Ⅱ)求证:y比x更接近于
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丹东模拟)已知椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)经过点(
1
2
3
),一个焦点是F(0,-
3
).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C与y轴的两个交点为A1、A2,点P在直线y=a2上,直线PA1、PA2分别与椭圆C交于M、N两点.试问:当点P在直线y=a2上运动时,直线MN是否恒经过定点Q?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丹东模拟)已知实数x、y足约束条件
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若使得目标函数ax+y取最大值时有唯一最优解(1,3),则实数a的取值范围是(  )

查看答案和解析>>

同步练习册答案