题目列表(包括答案和解析)
已知![]()
(1)求函数
在
上的最小值
(2)对一切的
恒成立,求实数a的取值范围
(3)证明对一切
,都有
成立
【解析】第一问中利用
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
![]()
第二问中,
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
第三问中问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
解:(1)
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
…………4分
(2)
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
…………9分
(3)问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
设向量
,
,其中
,由不等式
恒成立,可以证明(柯西)不等式
(当且仅当
∥
,即
时等号成立),己知
,若
恒成立,利用可西不等式可求得实数
的取值范围是
设向量
,
,其中
,由不等式
恒成立,可以证明(柯西)不等式
(当且仅当
∥
,即
时等号成立),己知
,若
恒成立,利用可西不等式可求得实数
的取值范围是
已知函数
,(
),![]()
(1)若曲线
与曲线
在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当
时,若函数
的单调区间,并求其在区间(-∞,-1)上的最大值。
【解析】(1)
,
∵曲线
与曲线
在它们的交点(1,c)处具有公共切线
∴
,![]()
∴![]()
(2)令
,当
时,![]()
令
,得![]()
时,
的情况如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函数
的单调递增区间为
,
,单调递减区间为![]()
当
,即
时,函数
在区间
上单调递增,
在区间
上的最大值为
,
当
且
,即
时,函数
在区间
内单调递增,在区间
上单调递减,
在区间
上的最大值为![]()
当
,即a>6时,函数
在区间
内单调递赠,在区间
内单调递减,在区间
上单调递增。又因为![]()
所以
在区间
上的最大值为
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com