即f(x)的值域为. 查看更多

 

题目列表(包括答案和解析)

对于函数y=f(x)及其定义域的子集D,若存在常数M,使得对于任意的x1∈D,存在唯一的x2∈D满足等式=M,则称M为f(x)在D上的均值.如果是f(x)在(0,+∞)上的唯一均值,那么函数y=f(x)可以是__________.(只需写出一个可能的情况即可)

查看答案和解析>>

对于函数y=f(x)及其定义域的子集D,若存在常数M,使得对于任意的x1∈D,存在唯一的x2∈D满足等式=M,则称M为f(x)在D上的均值.如果是f(x)在(0,+∞)上的唯一均值,那么函数y=f(x)可以是__________.(只需写出一个可能的情况即可)

查看答案和解析>>

(理)已知函数f(x)=ex-k-x,其中x∈R.

(1)当k=0时,若g(x)=的定义域为R,求实数m的取值范围;

(2)给出定理:若函数f(x)在[a,b]上连续,且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使f(x0)=0.运用此定理,试判断当k>1时,函数f(x)在[k,2k]内是否存在零点.

(文)已知数列{an}的前n项和为Sn,a1=2,且nan+1=Sn+n(n+1)(n∈N*).

(1)求an;

(2)设bn=,求{bn}的最大项.

查看答案和解析>>

已知函数f(x)=为常数。

(I)当=1时,求f(x)的单调区间;

(II)若函数f(x)在区间[1,2]上为单调函数,求的取值范围。

【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=,则f(x)的定义域是然后求导,,得到由,得0<x<1;由,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则在区间[1,2]上恒成立,即即,或在区间[1,2]上恒成立,解得a的范围。

(1)当a=1时,f(x)=,则f(x)的定义域是

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函数,在(1,上是减函数。……………6分

(2)。若函数f(x)在区间[1,2]上为单调函数,

在区间[1,2]上恒成立。∴,或在区间[1,2]上恒成立。即,或在区间[1,2]上恒成立。

又h(x)=在区间[1,2]上是增函数。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或

 

查看答案和解析>>

函数的定义域为,且满足对于任意,有

⑴求的值;

⑵判断的奇偶性并证明;

⑶如果,且上是增函数,求的取值范围.

【解析】(Ⅰ) 通过赋值法,,求出f(1)0;

(Ⅱ) 说明函数f(x)的奇偶性,通过令,得.令,得,推出对于任意的x∈R,恒有f(-x)=f(x),f(x)为偶函数.

(Ⅲ) 推出函数的周期,根据函数在[-2,2]的图象以及函数的周期性,即可求满足f(2x-1)≥12的实数x的集合.

 

查看答案和解析>>


同步练习册答案