题目列表(包括答案和解析)
已知在
中,
,
,
,解这个三角形;
【解析】本试题主要考查了正弦定理的运用。由正弦定理得到:![]()
,然后又
![]()
又
再又
得到c。
解:由正弦定理得到:![]()
![]()
又
……4分
又
……8分
又
![]()
在
中,
,分别是角
所对边的长,
,且![]()
(1)求
的面积;
(2)若
,求角C.
【解析】第一问中,由
又∵
∴
∴
的面积为![]()
第二问中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C为内角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面积为
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C为内角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
如图,测量河对岸的塔高
时,可以选与塔底
在同一水平面内的两个测点
.现测得![]()
,并在点
测得塔顶
的仰角为
,
求塔高
(精确到
,
)
![]()
【解析】本试题主要考查了解三角形的运用,利用正弦定理在
中,得到
,然后在
中,利用正切值可知![]()
解:在
中,![]()
由正弦定理得:
,所以 ![]()
在
中,![]()
在△ABC中,
为三个内角
为三条边,
且![]()
(I)判断△ABC的形状;
(II)若
,求
的取值范围.
【解析】本题主要考查正余弦定理及向量运算
第一问利用正弦定理可知,边化为角得到![]()
![]()
所以得到B=2C,然后利用内角和定理得到三角形的形状。
第二问中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,则A=C,∴
是等腰三角形。
(2)
![]()
如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将
折起,使得B与C重合于O.
(Ⅰ)设Q为AE的中点,证明:QD
AO;
(Ⅱ)求二面角O—AE—D的余弦值.
![]()
【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因为Q为AE的中点,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
第二问中,作MN
AE,垂足为N,连接DN
因为AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因为AO
DM ,DM
平面AOE
因为MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
![]()
(1)取AO中点M,连接MQ,DM,由题意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因为Q为AE的中点,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
(2)作MN
AE,垂足为N,连接DN
因为AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因为AO
DM ,DM
平面AOE
因为MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=![]()
二面角O-AE-D的平面角的余弦值为![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com