题目列表(包括答案和解析)
在棱长为
的正方体
中,
是线段
的中点,
.
(1) 求证:
^
;
(2) 求证:
//平面
;
(3) 求三棱锥
的表面积.
![]()
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用
,得到结论,第二问中,先判定
为平行四边形,然后
,可知结论成立。
第三问中,
是边长为
的正三角形,其面积为
,
因为
平面
,所以
,
所以
是直角三角形,其面积为
,
同理
的面积为
,
面积为
. 所以三棱锥
的表面积为
.
解: (1)证明:根据正方体的性质
,
因为
,
所以
,又
,所以
,
,
所以
^
.
………………4分
(2)证明:连接
,因为
,
所以
为平行四边形,因此
,
由于
是线段
的中点,所以
, …………6分
因为![]()
面
,![]()
平面
,所以
∥平面
. ……………8分
(3)
是边长为
的正三角形,其面积为
,
因为
平面
,所以
,
所以
是直角三角形,其面积为
,
同理
的面积为
,
……………………10分
面积为
. 所以三棱锥
的表面积为
![]()
已知数列
满足
且对一切
,
有![]()
![]()
(Ⅰ)求证:对一切![]()
(Ⅱ)求数列
通项公式.
(Ⅲ)求证:![]()
【解析】第一问利用,已知表达式,可以得到
,然后得到
,从而求证
。
第二问
,可得数列的通项公式。
第三问中,利用放缩法的思想,我们可以得到![]()
然后利用累加法思想求证得到证明。
解: (1) 证明:
![]()
已知
中,内角
的对边的边长分别为
,且![]()
(I)求角
的大小;
(II)若
求
的最小值.
【解析】第一问,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二问,![]()
三角函数的性质运用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,则当
,即
时,y的最小值为
.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
![]()
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)证明:易得
,
于是
,所以![]()
(2)
,
设平面PCD的法向量
,
则
,即
.不防设
,可得
.可取平面PAC的法向量
于是
从而
.
所以二面角A-PC-D的正弦值为
.
(3)设点E的坐标为(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)证明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如图,作
于点H,连接DH.由
,
,可得
.
因此
,从而
为二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值为
.
(3)如图,因为
,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故
或其补角为异面直线BE与CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
已知函数
,数列
的项满足:
,(1)试求![]()
(2) 猜想数列
的通项,并利用数学归纳法证明.
【解析】第一问中,利用递推关系
, ![]()
, ![]()
第二问中,由(1)猜想得:
然后再用数学归纳法分为两步骤证明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(数学归纳法证明)i)
,
,命题成立
ii) 假设
时,
成立
则
时,![]()
![]()
![]()
综合i),ii) :
成立
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com