令.则.有.得. ----4分 查看更多

 

题目列表(包括答案和解析)

某老板拟赞助甲,乙,丙,丁四位年轻人创业,现聘请了六位实业家,独立地对每位年轻人的创业方案进行投票,假设这六位实业家对甲,乙,丙,丁投票结果为“赞成”的概率分别为
1
6
1
4
1
3
3
4
,若某年轻人没有人“赞成”,则老板只赞助他1万元,且每多获得一个人的“赞成”,就多给2万元的创业赞助;令ξ1,ξ2,ξ3,ξ4分别表示甲,乙,丙,丁获得的赞助额.
(1)写出ξ3的分布列和ξ3的数学期望与方差;(相应概率可用组合数表示)
(2)试估计这位老板的赞助总额.

查看答案和解析>>

某老板拟赞助甲,乙,丙,丁四位年轻人创业,现聘请了六位实业家,独立地对每位年轻人的创业方案进行投票,假设这六位实业家对甲,乙,丙,丁投票结果为“赞成”的概率分别为,若某年轻人没有人“赞成”,则老板只赞助他1万元,且每多获得一个人的“赞成”,就多给2万元的创业赞助;令ξ1,ξ2,ξ3,ξ4分别表示甲,乙,丙,丁获得的赞助额.
(1)写出ξ3的分布列和ξ3的数学期望与方差;(相应概率可用组合数表示)
(2)试估计这位老板的赞助总额.

查看答案和解析>>

(08年安徽皖南八校联考)(本小题满分13分)

袋中有红球和黄球若干个,从中任摸一球,摸得红球的概率为,摸得黄球的概率为.若从中任摸一球,放回再摸,第次摸得红球,则记=1,摸得黄球,则记=一1.令

(1)当==时,记,求的分布列及数学期望;

(2)当时,求=1,2,3,4)的概率.

 

查看答案和解析>>

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>


同步练习册答案