题目列表(包括答案和解析)
设f (x)=sin 2x+
(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 该函数的图象可由
的图象经过怎样的平移和伸缩变换得到?
(Ⅱ)若f (θ)=
,其中
,求cos(θ+
)的值;
【解析】第一问中,![]()
即
变换分为三步,①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;
第二问中因为
,所以
,则
,又![]()
,
,从而![]()
进而得到结论。
(Ⅰ) 解:![]()
即
。…………………………………3分
变换的步骤是:
①把函数
的图象向右平移
,得到函数
的图象;
②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的
倍,得到函数
的图象;
③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数
的图象;…………………………………3分
(Ⅱ) 解:因为
,所以
,则
,又![]()
,
,从而
……2分
(1)当
时,
;…………2分
(2)当
时;![]()
函数f(x)=Asin(wx+
),(A)>0,w>0,|
|<
)的一系列对应值如下表:
![]()
(1)根据表中数据求出f(x)的解析式;
(2)指出函数f(x)的图象是由函数y=sinx(x∈R)的图象经过怎样的变化而得到的;
(3)令g(x)=f(x+
)-a,若g(x)在x∈[-
,
]时有两个零点,求a的取值范围.
已知定义在(-1,1)上的函数f(x)满足f
=1,且对x、y∈(-1,1)时,有f(x)-f(y)=
.
(1)判断f(x)在(-1,1)上的奇偶性,并证明之;
(2)令x1=
,xn+1=
,求数列{f(xn)}的通项公式;
(3)设Tn为数列{
}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有Tn<
成立?若存在,求出m的最小值;若不存在,则说明理由.
已知数列{an}中,
,点(n,2an+1-an)在直线y=x上,其中n∈N*.
(1)令bn=an+1-an-1,求证数列{bn}是等比数列
(2)求数列{an}的通项;
(3)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列
为等差数列?若存在,试求出λ.若不存在,则说明理由.
已知数列{an}中,
,点(n,2an+1-an)在直线y=x上,其中n=1,2,3….
(1)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(2)求数列{an}通项公式;
(3)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列
为等差数列?若存在,试求出λ.若不存在,则说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com