题目列表(包括答案和解析)
如图,在三棱柱
中,
侧面
,
为棱
上异于
的一点,
,已知
,求:
(Ⅰ)异面直线
与
的距离;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,
、
分别为Y,Z轴建立空间直角坐标系.由于,![]()
![]()
在三棱柱
中有
,
设![]()
![]()
![]()
又
侧面
,故
. 因此
是异面直线
的公垂线,则
,故异面直线
的距离为1.
(II)由已知有
故二面角
的平面角
的大小为向量
与
的夹角.
![]()
如图,在南北方向直线延伸湖岸上有一港口A,一汽艇以60 km/h的速度从A出发,30分钟后因故障而停在湖里.已知汽艇出发后按直线前进,以后又改成正东方向航行,但不知最初的方向和何时改变方向.现要去营救,请用图表示营救的区域.
如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
![]()
【解析】(Ⅰ)因为![]()
又
是平面PAC内的两条相较直线,所以BD
平面PAC,
而
平面PAC,所以
.
(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD
平面PAC,
所以
是直线PD和平面PAC所成的角,从而![]()
.
由BD
平面PAC,
平面PAC,知
.在
中,由![]()
,得PD=2OD.因为四边形ABCD为等腰梯形,
,所以
均为等腰直角三角形,从而梯形ABCD的高为
于是梯形ABCD面积
在等腰三角形AOD中,![]()
所以![]()
故四棱锥
的体积为
.
![]()
【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD
平面PAC即可,第二问由(Ⅰ)知,BD
平面PAC,所以
是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由
算得体积
已知函数
,
.
(Ⅰ)若函数
依次在
处取到极值.求
的取值范围;
(Ⅱ)若存在实数
,使对任意的
,不等式
恒成立.求正整数
的最大值.
【解析】第一问中利用导数在在
处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数
,使对任意的
,不等式
恒成立转化为
,恒成立,分离参数法求解得到范围。
解:(1)
①
![]()
(2)不等式
,即
,即
.
转化为存在实数
,使对任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
设
,则.![]()
设
,则
,因为
,有
.
故
在区间
上是减函数。又![]()
故存在
,使得
.
当
时,有
,当
时,有
.
从而
在区间
上递增,在区间
上递减.
又
[来源:]
![]()
所以当
时,恒有
;当
时,恒有![]()
;
故使命题成立的正整数m的最大值为5
汽车行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的重要因素.在一个限速40千米/时以内的弯道上,甲、乙两辆汽车相向而行,当司机发现有情况时,同时刹车,但汽车还是相撞了.事故发生后,现场测得甲车的刹车距离超过12米,但不超过15米;乙车刹车距离超过10米,但不超过12米.又知甲、乙车型的刹车距离s(米)与车速x(千米/时)之间分别有下列关系:
则因超速行驶而应负主要责任的是__________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com