当变化时.的变化情况如下: 查看更多

 

题目列表(包括答案和解析)

心理学家研究发现:一般情况下,学生的注意力随着老师讲课时间的变化而变化.讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y随时间t的变化规律有如下关系式:

y=

(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中?

(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?

(3)一道数学综合题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?如果不能讲解完,说明理由;如果能够讲解完,请说明老师应该在哪个时间段内讲解.

查看答案和解析>>

精英家教网心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x天后的存留量y1=
4
x+4
;若在t(t>0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y2随时间变化的曲线恰好为直线的一部分,其斜率为
a
(t+4)2
(a<0)
,存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”
(1)若a=-1,t=5,求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.

查看答案和解析>>

心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则天后的存留量;若在天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存储量随时间变化的曲线恰为直线的一部分,其斜率为存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时此刻为“二次复习最佳时机点”.

(1)若,求“二次最佳时机点”;

(2)若出现了“二次复习最佳时机点”,求的取值范围.

 

 

 

查看答案和解析>>

心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x 天后的存留量;若在t(t>0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y2随时间变化的曲线恰好为直线的一部分,其斜率为,存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”
(1)若a=-1,t=5,求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.

查看答案和解析>>

心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则天后的存留量;若在天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存储量随时间变化的曲线恰为直线的一部分,其斜率为存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时此刻为“二次复习最佳时机点”.
(1)若,求“二次最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求的取值范围.

查看答案和解析>>


同步练习册答案