题目列表(包括答案和解析)
分别指出下列复合命题的形式及构成它的简单命题,并指出复合命题的真假:
(1)5或3是15的约数;
(2)矩形的对角线垂直平分;
(3)方程x2-x+1=0没有实数根;
(4)不存在角α,使得sin2α>1.
选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,曲线C1的参数方程为
(
为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cos
-4sin
(ρ>0).
(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.
选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,曲线C1的参数方程为
(
为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cos
-4sin
(ρ>0).
(Ⅰ)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.
选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,曲线C1的参数方程为
(
为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cos
-4sin
(ρ>0).
(1)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线C1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C2的切线l,求切线l的方程.
已知椭圆C:
(a>b>0)的左右焦点分别是F1(-c,0),F2(c,0),直线l:x=my+c与椭圆C交于两点M,N且当m=-
时,M是椭圆C的上顶点,且△MF1F2的周长为6.
![]()
(1)求椭圆C的方程;
(2)设椭圆C的左顶点为A,直线AM,AN与直线:x=4分别相交于点P,Q,问当m变化时,以线段PQ为直径的圆被x轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com