8*.a+b与a-b同正时,a+b与a-b同负时 查看更多

 

题目列表(包括答案和解析)

 

某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:

①每位参加者计分器的初初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分

②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;

③每位参加者按问题A、B、C、D顺序作答,直至答题结束.

假设甲同学对问题A、B、C、D回答正确的概率依次为,且各题回答正确与否相互之间没有影响.

   (Ⅰ)求甲同学能进入下一轮的概率;

   (Ⅱ)用表示甲内当家本轮答题结束时答题的个数,求的分布列和数学期望E.

 

 

 

查看答案和解析>>

某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:

①每位参加者计分器的初始分值均为10分,答对问题A、B、C、D分别加分1分、2分、3分、6分,答错任意一题减2分;

②每回答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分数时,答题结束,淘汰出局;

③每位参加者按问题A、B、C、D回答正确的概率依次为3/4,1/2,1/3,1/4,且各题回答正确与否相互之间没有影响.

(Ⅰ)求甲同学能进入下一轮的概率;

(Ⅱ)用表示甲同学本轮答题结束时答题的个数,求的分布列和数学期望E

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记,,(AB、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记,,(AB、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

某段城铁线路上依次有A、B、C三站,AB=5km,BC=3km,在列车运行时刻表上,规定列车8时整从A站发车,8时07分到达B站并停车1分钟,8时12分到达C站,在实际运行中,假设列车从A站正点发车,在B站停留1分钟,并在行驶时以同一速度匀速行驶,列车从A站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差。

 (1)分别写出列车在B、C两站的运行误差;(用含的表达式表示,并以分钟为单位)

 (2)若要求列车在B,C两站的运行误差之和不超过2分钟,求的取值范围。

查看答案和解析>>


同步练习册答案