点P.Q在直线l上.点Q在平面α内.点P不在平面α内例2:一个平面把空间分成 部分.两个平面把空间最多分成 部分.三个平面把空间最多分成 部分.解答:2.4.8三个性质――平面性质的三个公理[补充习题] 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xoy中,设点F(1,0),直线l:x=-1,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点Q的轨迹的方程;
(2)记Q的轨迹的方程为E,过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求证:直线MN必过定点R(3,0).

查看答案和解析>>

在平面直角坐标系中,△ABC的两个顶点A、B的坐标分别是(-1,0),(1,0),点G是△ABC的重心,y轴上一点M满足GM∥AB,且|MC|=|MB|.
(I)求△ABC的顶点C的轨迹E的方程;
(II)不过点A的直线l:y=kx+b与轨迹E交于不同的两点P、Q,当
AP
AQ
=0时,求k与b的关系,并证明直线l过定点.

查看答案和解析>>

在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断
OM
OL
是否为定值?并证明你的结论.

查看答案和解析>>

在平面直角坐标系xoy中,椭圆C为
x2
4
+y2=1
(1)若一直线与椭圆C交于两不同点M、N,且线段MN恰以点(-1,
1
4
)为中点,求直线MN的方程;
(2)若过点A(1,0)的直线l(非x轴)与椭圆C相交于两个不同点P、Q试问在x轴上是否存在定点E(m,0),使
PE
QE
恒为定值λ?若存在,求出点E的坐标及实数λ的值;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,平行于x轴且过点A(3
3
,2)
的入射光线l1被直线l:y=
3
3
x
反射,反射光线l2交y轴于B点.圆C过点A且与l1、l2相切.
(1)求l2所在的直线的方程和圆C的方程;
(2)设P、Q分别是直线l和圆C上的动点,求PB+PQ的最小值及此时点P的坐标.

查看答案和解析>>


同步练习册答案