精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xoy中,椭圆C为
x2
4
+y2=1
(1)若一直线与椭圆C交于两不同点M、N,且线段MN恰以点(-1,
1
4
)为中点,求直线MN的方程;
(2)若过点A(1,0)的直线l(非x轴)与椭圆C相交于两个不同点P、Q试问在x轴上是否存在定点E(m,0),使
PE
QE
恒为定值λ?若存在,求出点E的坐标及实数λ的值;若不存在,请说明理由.
分析:(1)先判断直线MN与椭圆必有公共点,再利用点差法得到中点坐标与直线斜率的关系式,即可求直线MN的方程;
(2)假定存在定点E(m,0),使
PE
QE
恒为定值λ,可设直线l的方程代入椭圆方程,得到一元二次方程,进而利用向量的关系得到参数的值.
解答:解:(1)∵点(-1,
1
4
)在椭圆内部,∴直线MN与椭圆必有公共点
设点M(x1,y1),N(x2,y2),由已知x1≠x2,则有
x12
4
+y12=1
x22
4
+y22=1

两式相减,得
(x1+x2)(x1-x2)
4
=-(y1-y2)(y1+y2
x1+x2=-2,y1+y2=
1
2
,∴直线MN的斜率为1
∴直线MN的方程为4x-4y+5=0;
(2)假定存在定点E(m,0),
PE
QE
恒为定值λ
由于直线l不可能为x轴,于是可设直线l的方程为x=ky+1,且设点P(x3,y3),Q(x4,y4),
将x=ky+1代入
x2
4
+y2=1得(k2+4)y2+2ky-3=0.
显然△>0,∴y3+y4=-
2k
k2+4
,y3y4=-
3
k2+4

EP
=(x3-m,y3),
EQ
=(x4-m,y4),,
PE
QE
=x3x4-m(x3+x4)+m2+y3y4=
(m2-4)k2+4m2-8m+1
k2+4

若存在定点E(m,0),使
(m2-4)k2+4m2-8m+1
k2+4
=λ为定值(λ与k值无关),则必有
m2-4=λ
4m2-8m+1=4λ

∴m=
17
8
,λ=
33
64

∴在x轴上存在定点E(
17
8
,0),使
PE
QE
恒为定值
33
64
点评:本题主要考查了直线与椭圆的位置关系综合运用,考查点差法,考查向量知识的运用,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案