①当p<0时.由(1)知f()<0 查看更多

 

题目列表(包括答案和解析)

已知c>0.设

命题P:cn=0.

命题Q:当x∈[,2]时,函数f(x)=x+恒成立.

    如果P或Q为真命题,P且Q为假命题,求c的取值范围.

    分析:由cn=0得,0<c<1.∴P:0<c<1,

    由x∈[,2]时,函数f(x)=x+恒成立,想到<f(x)min,故需求f(x)在[,2]上的最小值.

查看答案和解析>>

已知函数f(x)=
x2+x-2,x≥0
x2-x-2,x<0.

(Ⅰ)判断f(x)的奇偶性,并证明你的结论;
(Ⅱ)若x1≠x2,且f(x1)=f(x2),求f(x1+x2);
(Ⅲ)由点H(0,h)向f(x)引切线,切点分别为P,Q,当△PQH为正三角形时,求h的值.

查看答案和解析>>

设函数y=f(x)对任意的实数x,都有f(x)=
12
f(x-1)
,且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.

查看答案和解析>>

设函数y=f(x)对任意的实数x,都有f(x)=
1
2
f(x-1)
,且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.

查看答案和解析>>

(文)(1)已知动点P(x,y)到点F(0,1)与到直线y=-1的距离相等,求点P的轨迹L的方程;
(2)若正方形ABCD的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲线L上,设BC的斜率为k,l=|BC|,求l关于k的函数解析式l=f(k);
(3)由(2),求当k=2时正方形ABCD的顶点D的坐标.

查看答案和解析>>


同步练习册答案