那么M=[x1.x2].M[1.4]1≤x1<x2≤4 查看更多

 

题目列表(包括答案和解析)

已知m∈R,对p:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使“p且q”为假命题、“p或q”为真命题的实数m的取值范围.

 

查看答案和解析>>

设x是一个自然数.若一串自然数x0=1,x1,x2,…,xt-1,xt=x,满足xi-1<xi,xi-1|xi,i=1,2,…,t.则称{x0,x1,x2,…xt}为x的一条因子链,t为该因子链的长度.T(x)与R(x)分别表示x的最长因子链的长度和最长因子链的条数.对于x=5k×31m×1990n(k,m,n是自然数)试求T(x)与R(x).

查看答案和解析>>

已知,设是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.

【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”为真命题,只需P真Q真即可。

解:由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

综上,要使“P∧Q”为真命题,只需P真Q真,即

解得实数m的取值范围是(4,8]

 

查看答案和解析>>

(1)若M个数的平均数是X,N个数的平均数是Y,则这M+N个数的平均数是___________;

(2)如果两组数x1,x2,…,xn和y1,y2,…,yn的样本平均数分别是x和y,那么一组数x1+y1,x2+y2,…,xn+yn的平均数是___________.

活动:学生思考或交流,教师提示,根据平均数的定义得到结论.

查看答案和解析>>

若定义在[-2012,2012]上的函数f(x)满足:对任意x1,x2∈[-2012,2012]有f(x1+x2)=f(x1)+f(x2)-2011,且x>0时有f(x)>2011,f(x)的最大值、最小值分别为M、N,则M+N=


  1. A.
    2011
  2. B.
    2012
  3. C.
    4024
  4. D.
    4022

查看答案和解析>>


同步练习册答案