精英家教网 > 高中数学 > 题目详情

设x是一个自然数.若一串自然数x0=1,x1,x2,…,xt-1,xt=x,满足xi-1<xi,xi-1|xi,i=1,2,…,t.则称{x0,x1,x2,…xt}为x的一条因子链,t为该因子链的长度.T(x)与R(x)分别表示x的最长因子链的长度和最长因子链的条数.对于x=5k×31m×1990n(k,m,n是自然数)试求T(x)与R(x).

解析:设x的质因数分解式为

其中p1、p2、…、pn为互不相同的质数,α1、α2、…、αn为正整数.

由于因子链上,每一项至少比前一项多一个质因数,所以T(x)≤α1+α2+…+αn

将α1+α2+…+αn个质因数(其中α1个p1,α2个p2,…,αn个pn)依任意顺序排列,每个排列产生一个长为α1+α2+…+αn的因子链(x1为排列的第一项,x2为x1乘排列的第二项,x3为x2乘第三项,…),因此T(x)=α1+α2+…+αn,R(x)即排列

对于x=5k×31m×1990n=2n×5k+n×31m×199n

T(x)=3n+k+m

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1,F2为焦点,离心率为
12
的椭圆C2与抛物线C1的一个交点为P.
(1)若椭圆的长半轴长为2,求抛物线方程;
(2)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,如果|A1A2|等于△PF1F2的周长,求l的斜率;
(3)是否存在实数m,使得△PF1F2的边长是连续的自然数?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程及其右准线的方程;
(2)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由;
(3)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,设抛物线C1:y2=4mx(m>0)的焦点为F2,且其准线与x轴交于F1,以F1,F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆C2的方程;
(2)是否存在实数m,使得△PF1F2的三条边的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•杭州一模)设函数f(x)=
x2
ax-2
(a∈N*),又存在非零自然数m,使得f(m)=m,f(-m)<-
1
m
成立.
(1)求函数f(x)的表达式;
(2)设{an}是各项非零的数列,若f(
1
an
)=
1
4(a1+a2+…+an)
对任意n∈N*成立,求数列{an}的一个通项公式;
(3)在(2)的条件下,数列{an}是否惟一确定?请给出判断,并予以证明.

查看答案和解析>>

同步练习册答案