A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

下列命题中正确的是(   

A.若两条直线都垂直于第三条直线,则这两条直线一定平行;

B.若两条直线和第三条直线成等角,则这两条直线平行;

C.与两条异面直线都垂直的直线,叫做异面直线的公垂线;

D.一直线与两平行线中的一条垂直,则必与另一条也垂直.

 

查看答案和解析>>

下列命题中正确的是(   

A.若两条直线都垂直于第三条直线,则这两条直线一定平行;

B.若两条直线和第三条直线成等角,则这两条直线平行;

C.与两条异面直线都垂直的直线,叫做异面直线的公垂线;

D.一直线与两平行线中的一条垂直,则必与另一条也垂直.

 

查看答案和解析>>

小明做了两道题,事件A为“做对第一个”,事件B为“做对第二个”,其中“做对第一个”与“做对第二个”的概率都是,下列说法正确的是(  )

    A.小明做对其中一个的概率为

    B.事件A与事件B为互斥事件

    C.A∩B={两个题都做对}

    D.事件A与事件B必然要发生一个

     

查看答案和解析>>

为了解某中学生遵守《中华人民共和国交通安全法》的情况,调查部门在该校进行了如下的随机调查,向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口时你是否闯过红灯?要求被调查者背对着调查人员抛掷一枚硬币,如果出现正面,就回答第一个问题,否则就回答第二个问题.被调查者不必告诉调查人员自己回答的是哪一个问题,只需回答“是”或“不是”,因为只有调查者本人知道回答了哪一个问题,所以都如实地做了回答.结果被调查的800人(学号从1至800)中有240人回答了“是”.由此可以估计这800人中闯过红灯的人数是(  )

查看答案和解析>>

 

说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.

      2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

      3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.

4.只给整数分数,选择题和填空题不给中间分.

 

一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.

题号

1

2

3

4

5

6

7

8

答案

A

C

B

C

B

A

D

D

 

二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前二题得分.第12题第1个空3分,第2个空2分.

9.2          10.79         11.0 或 2       12.16,

13.1         14.3          15.6

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)

解:(1)

                 .                

∴函数的值域为.                                     

(2)∵,∴

都为锐角,∴

                    

                  

           

的值为.                                      

 

17.(本小题主要考查空间线面关系、几何体的表面积与体积等基本知识,考查数形结合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)

解:(1)设,∵几何体的体积为

,                      

,解得

的长为4.                                           

(2)在线段上存在点,使直线垂直.     

以下给出两种证明方法:

方法1:过点的垂线交于点,过点 

于点

平面

平面,∴

,∴平面

平面,∴.      

在矩形中,∵

,即,∴

,∴,即,∴

中,∵,∴

由余弦定理,得

∴在线段上存在点,使直线垂直,且线段的长为

方法2:以点为坐标原点,分别以所在的直线为轴,轴,轴建立如图的空间直角坐标系,由已知条件与(1)可知,,  

假设在线段上存在点≤2,,0≤

使直线垂直,过点于点

 

,得

,∴

,∴.       

此时点的坐标为,在线段上.

,∴

∴在线段上存在点,使直线垂直,且线段的长为

18.(本小题主要考查等差数列、等比数列的通项公式与前项和公式等基础知识,考查化归与转化、分类与整合的数学思想方法,以及推理论证能力和运算求解能力)

解:设等比数列的首项为,公比为

成等差数列,

,∴

解得.             

时,∵,         

∴当时,不成等差数列.

时,成等差数列.下面给出两种证明方法.

证法1:∵

                            

                            

∴当时,成等差数列.

证法2:∵,          

              , 

∴当时,成等差数列. 

19.(本小题主要考查等可能事件、互斥事件和独立重复试验等基础知识,考查化归与转化的数学思想方法,以及推理论证能力和运算求解能力)

解:(1)∵一次摸球从个球中任选两个,有种选法,                         

任何一个球被选出都是等可能的,其中两球颜色相同有种选法,

∴一次摸球中奖的概率.             

(2)若,则一次摸球中奖的概率,                  

三次摸球是独立重复试验,三次摸球恰有一次中奖的概率是

.                                    

(3)设一次摸球中奖的概率为,则三次摸球恰有一次中奖的概率为

上为增函数,在上为减函数.              

∴当时,取得最大值.

解得

故当时,三次摸球恰有一次中奖的概率最大.                 

 

20.(本小题主要考查函数的性质、函数与导数等知识,考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力和运算求解能力)

(1)解法1:∵,其定义域为,  

.                

是函数的极值点,∴,即.                                         

,∴.                                               

经检验当时,是函数的极值点,

.                                             

解法2:∵,其定义域为

.               

,即,整理,得

的两个实根(舍去),

变化时,的变化情况如下表:

0

极小值

依题意,,即

,∴.                           

(2)解:对任意的都有成立等价于对任意的都有.                       

[1,]时,

同步练习册答案