(2)设 .且.的最大值为5.求k的值. 查看更多

 

题目列表(包括答案和解析)

(2013•楚雄州模拟)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为(x-2,x-y).
(1)求|OP|的最大值;
(2)求|OP|取得最大值时的概率.

查看答案和解析>>

已知数列{an}的前n项和Sn=kn2+4n,k<0,且Sn的最大值为8.
(1)确定常数k的值,并求通项公式an
(2)求数列{
9-2an2n
}
的前n项和Tn

查看答案和解析>>

已知数列{an}的前n项和Sn=-n2+2kn(k∈N*),且Sn的最大值为4.
(1)确定常数k的值,并求数列{an}的通项公式an
(2)令bn=
5-an
3n
,数列{bn}的前n项和为Tn,试比较Tn
3
2
的大小.

查看答案和解析>>

如图,已知△ABC中,∠C=
π
2
.设∠CBA=θ,BC=a,它的内接正方形DEFG的一边EF在斜边AB上,D、G分别在AC、BC上.假设△ABC的面积为S,正方形DEFG的面积为T.
(1)用a,θ表示△ABC的面积S和正方形DEFG的面积T;
(2)设f(θ)=
T
S
,试求f(θ)的最大值P,并判断此时△ABC的形状;
(3)通过对此题的解答,我们是否可以作如下推断:若需要从一块直角三角形的材料上裁剪一整块正方形(不得拼接),则这块材料的最大利用率要视该直角三角形的具体形状而定,但最大利用率不会超过第(2)小题中的结论P.请分析此推断是否正确,并说明理由.

查看答案和解析>>

已知等差数列{an}的公差d大于0,且满足a3a6=55,a2+a7=16.数列{bn}满足an=b1+
b2
2 
+
b3
22
+…+
bn
2n-1
 (n∈N *)

(1)求数列{an},{bn}的通项公式;
(2)设cn=
anan+1an+2
bn+1
,求cn取得最大值时n的值.

查看答案和解析>>


同步练习册答案