(1)求时 的概率,(2)求的概率分布列及数学期望. 查看更多

 

题目列表(包括答案和解析)

投到“时尚生活”杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位初审专家都未通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则,不予录用。设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3,各位专家独立评审。
(1)求投到该杂志的1篇稿件被录用的概率;
(2)若某人投到该杂志3篇稿件,求他被录用稿件篇数X的分布列及期望值;
(3)若每篇稿件都需10元参评费,一旦予以录用则得150元稿酬,求(2)中撰稿人期望获得稿酬多少元?

查看答案和解析>>

投到“时尚生活”杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位初审专家都未通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则,不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3,各位专家独立评审.

(1)求投到该杂志的1篇稿件被录用的概率.

(2)若某人投到该杂志3篇稿件,求他被录用稿件篇数的分布列及期望值.

(3)若每篇稿件都需10元参评费,一旦予以录用则得150元稿酬,求(2)中撰稿人期望获得稿酬多少元?

查看答案和解析>>

一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为x1,x2,记ξ=(x1-3)2+(x2-3)2
(1)分别求出ξ取得最大值和最小值时的概率;
(2)求ξ的分布列及数学期望.

查看答案和解析>>

一个均匀的正四面体的四个面分别涂有1、2、3、4四个数字,现随机投掷两次,正四面体底面上的数字分别为,记

(1)分别求出取得最大值和最小值时的概率;

(2)求的分布列及数学期望.

查看答案和解析>>

一个均匀的正四面体的四个面分别涂有1、2、3、4四个数字,现随机投掷两次,正四面体底面上的数字分别为,记

(1)分别求出取得最大值和最小值时的概率;

(2)求的分布列及数学期望.

查看答案和解析>>

                                  (一)

一、选择题

1~8:CAAD    BBBD

二、填空题

9、            10、35            11、           12、       

13、          14、10            15、

三、解答题

16、解:(1)由及正弦定理有:    

                                       ……….2分

,且

;                             ……….4分

,则,∴三角形.            ……….6分

(2)∵ ,∴

,而,               ……….8分

,∴,∴.           ……….12分

17解:(1)取的中点的中点连结

平面, .

,

平面.……………………………3分

,四边形是平行四边形, 平面

平面, 平面平面 ………………………………6分

  (2)过,连结

由(1)中的平面平面,所以在面上的射影为,所以就是所求的角.  …………………………………………9分

令正方体的棱长为,所以,所以

与平面所成角的大小的正弦值为.   …………………………12分

18解:(1)表示取出的三个球中数字最大者为3.

①三次取球均出现最大数字为3的概率

②三取取球中有2次出现最大数字3的概率

③三次取球中仅有1次出现最大数字3的概率

.   ……………………………………………………7分

(2)在时, 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布为:

 

 

=1×+2×+3×+4× = .………………………………………………7分

19、解:(I)由已知抛物线的焦点为

故所求椭圆方程为                                              …………6分

   (II)设直线BC的方程为

代入椭圆方程并化简得                …………9分

又点A到BC的距离为,                                           …………11分

所以△ABC面积的最大值为                                             …………14分

20解:(1)

为增,

所以图象上的点总在图象的上方.    …………………………6分

(2)当

x

(-∞,0)

(0,1)

1

(1,+∞)

F(x)

0

+

F(x)

e

①当x>0时,F(x)在x=1时有最小值e,

②当x<0时,F(x)为减函数,

③当x=0时,∈R.

由①②③,恒成立的的范围是. ……………………………………14分

21解:(1)由

,所以

所以数列为等比数列.    …………………………………………4分

  (2)由(1)有. ……………………………………6分

所以,……,

,累和得

. …8分

因为,………………………………………………9分

所以

,用错位相减法得

,所以

所以

即当为奇数时命题成立.……………………………………………………………11分

所以.即当为偶数时命题成立.

综合以上得.………………………………………………13分

 

 


同步练习册答案