14. D是△ABC的AB边上一点,AB=4AD.P是此三角形的外接圆上的一点,并且∠ADP=∠ACB,那么 ▲ 查看更多

 

题目列表(包括答案和解析)

(平面几何选讲)如图,CD是圆O的直径,AE切圆O于点B,连接DB,∠D=20°,则∠DBE的大小为
70°
70°

查看答案和解析>>

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲) 若f(x)=|x-t|+|5-x|的最小值为3,则实数t的值是
 

B.(平面几何选讲) 已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.∠ADF=
 

C.(极坐标与参数方程) 直线
x=1+
4
5
t
y=-1-
3
5
t
(t为参数)被曲线ρ=
2
cos(θ-
π
4
)
所截的弦长为
 

查看答案和解析>>

精英家教网选做题A.平面几何选讲
过圆O外一点A作圆O的两条切线AT、AS,切点分别为T、S,过点A作圆O的割线APN,
证明:
AT2
AN2
=
PT•PS
NT•NS

B.矩阵与变换(10分)
已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转45°,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
C.坐标系与参数方程
已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求线段AB长的最大值.D.不等式选讲
已知m,n是正数,证明:
m3
n
+
n3
m
≥m2+n2

查看答案和解析>>

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲) 若f(x)=|x-t|+|5-x|的最小值为3,则实数t的值是   
B.(平面几何选讲) 已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.∠ADF=   
C.(极坐标与参数方程) 直线(t为参数)被曲线所截的弦长为   

查看答案和解析>>

(本题满分10分)选修4—1:平面几何选讲

        如图,AB是半圆O的直径,C是圆周上一点(异于A,B),过C作圆O的切线过A作直线的垂线AD,垂足为D,AD交半圆于点E,求证:CB=CE。

 

查看答案和解析>>

一、选择题:本大题共8题,每小题5分,共40分。

题号

1

2

3

4

5

6

7

8

 

 

答案

D

B

D

B

C

A

B

B

 

 

二、填空题:本大题共7小题,每小题5分,共30分。

9.55     10.-3     11.    12.      13.1     14.2    15.

三、解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。

16.(本小题满分12分)

已知向量,,,设.

(I)求函数的最小正周期。(II),求的值域。

解:(I)因为

                 ………………………………………………………4分

            所以函数的最小正周期.……………………………………6分

(II)因为,

………………………………………………………………………8分

所以……………………………………………………………10分

所以。 ……………………………………………………………… 12分

 

17.(本小题满分12分)

(1); ………………………………………………………4分

         (2); …………………………………………………………… 8分

         (3)表面积S=48. ……………………………………………………………… 12分

 

18.(本小题满分14分)

解答(1)x=1+1+1=3  或者x=-1-1-1=-3---------(4分)

 (2)

i

I=3

I=5

P

(0.53)+ (0.53)=0.25

1-0.25=0.75

 

 

 

Ei=3×0.25+5×0.75=4.5---------------(8分)

 (3)

ξ

ξ=1

ξ=3

P

18×0.55=

6×0.55+2×0.53=

 

 

 

 

 

Eξ=1×+3×=----------(14分)

 

所有情况列表(仅供参考)

ξ

x

 

x

 

ξ=1

-1

-1-1+1-1+1

+1

-1-1+1-1+1

 

-1-1+1+1-1

 

-1-1+1+1-1

 

-1+1-1-1+1

 

-1+1-1-1+1

 

-1+1-1+1-1

 

-1+1-1+1-1

 

-1+1+1-1-1

 

-1+1+1-1-1

 

+1-1-1-1+1

 

+1-1-1-1+1

 

+1-1-1+1-1

 

+1-1-1+1-1

 

+1-1+1-1-1

 

+1-1+1-1-1

 

+1+1-1-1-1

 

+1+1-1-1-1

ξ=3

-3

+1-1-1-1-1

+3

-1+1+1+1+1

 

-1+1-1-1-1

 

+1-1+1+1+1

 

-1-1+1-1-1

 

+1+1-1+1+1

 

-1-1-1

 

+1+1+1

 

19、(本小题满分14分)

 解:(I)∵  ∴  ∴

………3分

………………………………4分

  ∴

  ∴…………………………………………6分

……………………………………………………………………7分

(II)∵ ………………………………………………………8分 

…………………………………………………………………9分

     ∴…………………………………………………………10分

     由……………………12分

     …………………………………………………………14分

∴直线EF与抛物线相切。

20.(本小题满分14分)

解:(1)∵x,y

为恒为零

显然

又函数为单调函数,可得为等差数列

  从而---------------------------------------------------------(6分)

   (2)∵

是递增数列。--------------------------------(12分)

时, ------------------------------------------------------(14分)

 

21、(本小题满分14分)

解:(1)由已知得函数,且

又∵

∴函数的单调递增区间是

(2)设,

  (5分)

上连续,内是增函数。(7分)

  (8分)

  (9分)

    (10分)

(3)方法一由(1)知,设

……12分

 (14分)

内是增函数。

 

 


同步练习册答案