题目列表(包括答案和解析)
设双曲线
的两个焦点分别为
、
,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点
能否作出直线
,使
与双曲线
交于
、
两点,且
,若存在,求出直线方程,若不存在,说明理由.
【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.
(2)设直线l的方程为
,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理
表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.
| x2 |
| m |
| y2 |
| 27 |
|
| A、[9,+∞) |
| B、(1,9] |
| C、(1,2] |
| D、[2,+∞) |
| x2 |
| m |
| y2 |
| 27 |
|
| A.[9,+∞) | B.(1,9] | C.(1,2] | D.[2,+∞) |
已知直线
某学生做如下变形,由直线与双曲线联立消y得形如
的方程,当A=0时该方程有一解;当A≠0时,
恒成立,若该生计算过程正确,则实数m的取值范围是 .
| x2 |
| m |
| y2 |
| 8 |
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com