. 查看更多

 

题目列表(包括答案和解析)

10、,设{an}是正项数列,其前n项和Sn满足:4Sn=(an-1)(an+3),则数列{an}的通项公式an=
2n+1

查看答案和解析>>

精英家教网,如图给出的是计算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一个程序框图,其中判断框内填入的条件是
 

查看答案和解析>>

5、α,β为两个互相垂直的平面,a、b为一对异面直线,下列条件:
①a∥α、b?β;②a⊥α.b∥β;
③a⊥α.b⊥β;④a∥α、b∥β且a与α的距离等于b与β的距离,其中是a⊥b的充分条件的有(  )

查看答案和解析>>

,设f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则.
(i)f(
32
)=
 

(ii)设S为f(x)=0在区间[0,20]内的所有根之和,则S的最小值为
 

查看答案和解析>>

,已知y=f(x)是定义在R上的单调递减函数,对任意的实数x,y都有f(x+y)=f(x)f(y)且f(0)=1,数列{an}满足a1=4,f(log3-
an+1
4
)f(-1-log3
an
4
)=1
(n∈N*).
(1)求数列{an}的通项公式;
(2)设Sn是数列{an}的前n项和,试比较Sn与6n2-2的大小.

查看答案和解析>>

1-12  BDBDA    BABCABD

13.?2

14.2n1-n-2

15.7

16.90

17.(1)∵.

(2)证明:由已知

.

18.(1)由,当时,,显然满足

∴数列是公差为4的递增等差数列.

(2)设抽取的是第项,则.

,∴

.

故数列共有39项,抽取的是第20项.

19.

①+②得

20.(1)由条件得: .

(2)假设存在使成立,则    对一切正整数恒成立.

, 既.

故存在常数使得对于时,都有恒成立.

21.(1)第1年投入800万元,第2年投入800×(1-)万元……,

n年投入800×(1-n1万元,

所以总投入an=800+800(1-)+……+800×(1-n1=4000[1-(n

同理:第1年收入400万元,第2年收入400×(1+)万元,……,

n年收入400×(1+n1万元

bn=400+400×(1+)+……+400×(1+n1=1600×[(n-1]

(2)∴bnan>0,1600[(n-1]-4000×[1-(n]>0

化简得,5×(n+2×(n-7>0

x=(n,5x2-7x+2>0

xx>1(舍),即(nn≥5.

22.(文)

(1)当时,

,即

.

(1)

(2)

由(1)得

成立

故所得数列不符合题意.

.

综上,共有3个满足条件的无穷等差数列:

①{an} : an=0,即0,0,0,…;

②{an} : an=1,即1,1,1,…;

③{an} : an=2n-1,即1,3,5,…,

(理)

(1)由已知得:

.

(2)由,∴

,  ∴是等比数列.

,∴

 ,当时,

.

.