题目列表(包括答案和解析)
()数列
的前
项和为
,
(
).
(Ⅰ)证明数列
是等比数列,求出数列
的通项公式;
(Ⅱ)设
,求数列
的前
项和
;
(Ⅲ)数列
中是否存在三项,它们可以构成等差数列?若存在,求出一组符合条件的项;若不存在,说明理由.
()(本小题满分12分)等差数列
中,
,
;数列
的前
项和是
,且
.(Ⅰ) 求数列
的通项公式;(Ⅱ) 求证:数列
是等比数列;(Ⅲ) 记
,求
的前n项和
.
(Ⅱ)设{an}、{bn}是公比不相等的两个等比数列,cn=an+bn,证明数列{cn}不是等比数列.
(Ⅰ)已知数列{cn},其中cn=2n+3n,且数列{cn+1-pcn}为等比数列,求常数p;
(Ⅱ)设{an}、{bn}是公比不相等的两个等比数列,cn=an+bn,证明数列{cn}不是等比数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com