18.解: (Ⅰ)由已知.设恰好有2家煤矿必须整改的概率为P1. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知函数

(I)若函数在区间上存在极值,求实数a的取值范围;

(II)当时,不等式恒成立,求实数k的取值范围.

(Ⅲ)求证:解:(1),其定义域为,则

时,;当时,

在(0,1)上单调递增,在上单调递减,

即当时,函数取得极大值.                                       (3分)

函数在区间上存在极值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,则

,即上单调递增,                          (7分)

,从而,故上单调递增,       (7分)

          (8分)

(3)由(2)知,当时,恒成立,即

,则,                               (9分)

                                                                       (10分)

以上各式相加得,

                           

                                        (12分)

 

查看答案和解析>>

(本小题满分12分)

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

喜爱打篮球

不喜爱打篮球

合计

男生

 

5

 

女生

10

 

[来源:学|科|网]

合计

 

 

50[]

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整

(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;

(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,

还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、

喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求不全被选

中的概率.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

(本小题满分12分)

   已知函数是定义在上的奇函数,当(其中是自然对数的底,

   (1)求的解析式;

   (2)设,求证:当时,

   (3)是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由。

 

查看答案和解析>>

(本小题满分12分)已知二次函数满足:,且该函数的最小值为2.

⑴ 求此二次函数的解析式;

⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分12分)
已知函数是定义在上的奇函数,当(其中是自然对数的底,
(1)求的解析式;
(2)设,求证:当时,
(3)是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由。

查看答案和解析>>


同步练习册答案