题目列表(包括答案和解析)
已知椭圆:
(
)上任意一点到两焦点距离之和为
,离心率为
,左、右焦点分别为
,
,点
是右准线上任意一点,过
作直 线
的垂线
交椭圆于
点.
![]()
(1)求椭圆
的标准方程;
(2)证明:直线
与直线
的斜率之积是定值;
(3)点
的纵坐标为3,过
作动直线
与椭圆交于两个不同点
,在线段
上取点
,满足
,试证明点
恒在一定直线上.
设椭圆
过点
,且焦点为
。
(1)求椭圆
的方程;
(2)当过点
的动直线
与椭圆
相交与两不同点A、B时,在线段
上取点
,
满足
,证明:点
总在某定直线上。
(08年安徽卷理) (本小题满分13分)
设椭圆
过点
,且左焦点为![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相交于两不同点
时,在线段
上取点
,满足
。证明:点Q总在某定直线上。
()(本小题满分13分)
设椭圆
过点
,且着焦点为![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相交与两不同点
时,在线段
上取点
,满足
,证明:点
总在某定直线上
设椭圆
过点
,离心率为![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相交与两不同点
时,在线段
上取点
,满足
=
,证明:点
的轨迹与
无关.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com