(2)求证:在R上是单调增函数, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=x3-ax-1.

(1)若f(x)在实数集R上单调递增,求实数a的取值范围;

(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;

(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知定义在R上的函数是实数.

(Ⅰ)若函数在区间上都是增函数,在区间(-1,3)上是减函数,并且求函数的表达式;

(Ⅱ)若,求证:函数是单调函数.

查看答案和解析>>

已知定义在R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数.

(Ⅰ)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,(0)=-18,求函数f(x)的表达式;

(Ⅱ)若a,b,c满足b2-3ac<0,求证:函数f(x)是单调函数.

查看答案和解析>>

已知函数数学公式(a∈R).
(1)若函数f(x)在区间[2,+∞)上是单调递增函数,试求实数a的取值范围;
(2)当a=2时,求证:数学公式(x>2);
(3)求证:数学公式(n∈N*且n≥2).

查看答案和解析>>


同步练习册答案