已知数列 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前n项和为Sn,a1=1,a2=2,且点(Sn,Sn+1)在直线y=kx+1上
(Ⅰ)求k的值;
(Ⅱ)求证:{an}是等比数列;
(Ⅲ)记Tn为数列{Sn}的前n项和,求T10的值.

查看答案和解析>>

已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log3(a5+a7+a9)的值是(  )
A、-5
B、-
1
5
C、5
D、
1
5

查看答案和解析>>

已知数列an的前n项和Sn满足条件2Sn=3(an-1),其中n∈N*
(1)求证:数列an成等比数列;
(2)设数列bn满足bn=log3an.若 tn=
1bnbn+1
,求数列tn的前n项和.

查看答案和解析>>

已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n∈N*).
(1)令bn=2nan,求证:数列{bn}是等差数列,并求数列{an}的通项公式.
(2)令cn=
n+1
n
anTn=c1+c2+…+cn
,试比较Tn
5n
2n+1
的大小,并予以证明.

查看答案和解析>>

已知数列{an}的前n项和Sn,对一切正整数n,点(n,Sn)都在函数f(x)=2x+2-4的图象上.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

一、选择题:本题考查基础知识和基本运算.  每题5分,满分60分.

1.D      2。C       3.C       4.A       5.B      6.D 

7.A      8.B       9.A       10.C      11.B     12.A

二、填空题:本题考查基础知识和基本运算.  每题4分,满分16分.

13.15  14.4  15 .  16

三、解答题:本题共6大题,共74分.解答应写出文字说明、证明过程或演算步骤.

17.本题主要考查三角函数性质、三角恒等变换等基本知识,考查推理和运算能力.

解:( I )

  

   (Ⅱ)    

 

 

 18.本题主要考查简单随机抽样,用古典概型计算事件发生的概率等基础知识,考查研究基本事件的能力,以及应用意识。

     解:(I)设红色球有个,依题意得 红色球有4个.

(II)记“甲取出的球的编号比乙的大”为事件A

  所有的基本事件有(红1,白1),(红l,蓝2),(红1,蓝3),(白l,红1),

    (白1,蓝2),(白1,蓝3),(蓝2,红1),(蓝2,自1),(蓝2,蓝3),

(蓝3,红1),(蓝3,白1),(蓝3,蓝2),共12个

事件A包含的基本事件有(蓝2,红1),(蓝2,白1),

(蓝3,蓝2),共5个

所以,

19.本题主要考查线面平行与垂直关系,及多面体的体积计算等基础知识,考查空间想象能力,逻辑思维能力和运算能力.

(I)解:取CD的中点为F,连EF,则EF为的中位线. EF∥A1C

 又EF 平面A1BC,. EF∥平面A1BC

(II)证:四边形ABCD为直角梯形且AD∥BC,

AB⊥BC,AD=2,AB=_BC=1.AC=CD=

AD2=AC2+CD2 为直角三角形  CD⊥AC又四棱   柱ABCD一A1B1C1D1的侧棱  AAl垂直予底面ABCD,

CD 底面ABCD AAl⊥CD,又AA1与AC交于点A,

CD⊥平面A1ACCl    

  由CD⊥平面AlACClCD为四棱锥D-A1ACCl的底面    A1ACCl上的高,

  又AAl垂直于底面ABCD,四边形A1ACC1为矩形

  四棱锥D―A1ACCI的体积

20.此题主要考查数列、等差、等比数列的概念、数列的递推公式、数列前n项和的求法

  同时考查学生的分析问题与解决问题的能力,逻辑推理能力及运算能力.

解:(I)

    

(Ⅱ)

21.本题主要考查直线方程与性质、椭圆方程与性质以及直线与曲线的位置关系等基础知

  识;考查考生数形结合思想、运算求解能力、推理论证能力。

 

解:(I)

        

     

(Ⅱ)

 

22.本题主要考查二次函数及其性质、导数的基本知识,几何意义及其应用,同时考查考生分类讨论思想方法及化规的能力:

 

 解:(Ⅰ)

         

(Ⅱ)

 (Ⅲ)

 

 ①

    

③ 

  

方程有两个不等的正根,存在两条满足条件的切线;

  

 

 

 


同步练习册答案