题目列表(包括答案和解析)
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn.求满足不等式>2 010的n的最小值.
已知数列{an}中,a1=,点(n,2an+1-an)(n∈N*)在直线y=x上。
(I)计算a2,a3,a4的值;
(II)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(III)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{}为等差数列?若存在,试求出λ的值;若不存在,请说明理由。
设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,81}中则6q=________
数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*),若b3=-2,b10=12,则a8=
A.0 B.3 C.8 D.11
数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*),若b3=-2,b10=12,则a8=( )
A.0 B.3 C.8 D.11
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com