14.(参数方程与极坐标选做题)在极坐标系中.点到直 查看更多

 

题目列表(包括答案和解析)

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
A选修4-1:几何证明选讲
如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.
B选修4-2:矩阵与变换
已知矩阵A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C选修4-3:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
a
3cos2θ+4sin2θ
,焦距为2,求实数a的值.
D选修4-4:不等式选讲
已知函数f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c为实数)的最小值为m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

[选做题]在下面A,B,C,D四个小题中只能选做两题,每小题10分,共20分.
A.选修4-1:几何证明选讲
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F,判断BE是否平分∠ABC,并说明理由.
B.选修4-2:短阵与变换
已知矩阵M=
1
2
0
02
,矩阵M对应的变换把曲线y=sinx变为曲线C,求C的方程.
C.选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是ρ=4sin(θ+
π
4
)
,求曲线C的普通方程.
D.选修4-5:不等式选讲
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

(选做题)在直角坐标系xOy 中,曲线C1的参数方程为为参数),M是C1上的动点,P点满足,P点的轨迹为曲线C2
(Ⅰ)求C2的方程
(Ⅱ)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线C1的异于极点的交点为A,与C2的异于极点的交点为B,求.

查看答案和解析>>

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
A选修4-1:几何证明选讲
如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=∠OAC.
B选修4-2:矩阵与变换
已知矩阵A=,向量.求向量,使得A2=
C选修4-3:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=,焦距为2,求实数a的值.
D选修4-4:不等式选讲
已知函数f(x)=(x-a)2+(x-b)2+(x-c)2+(a,b.c为实数)的最小值为m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

[选做题]在下面A,B,C,D四个小题中只能选做两题,每小题10分,共20分.
A.选修4-1:几何证明选讲
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F,判断BE是否平分∠ABC,并说明理由.
B.选修4-2:短阵与变换
已知矩阵,矩阵M对应的变换把曲线y=sinx变为曲线C,求C的方程.
C.选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是,求曲线C的普通方程.
D.选修4-5:不等式选讲
已知x,y,z∈R,且x+y+z=3,求x2+y2+z2的最小值.

查看答案和解析>>

一、选择题(每小题5分,共40分)

题号

1

2

3

4

5

6

7

8

答案

A

A

C

D

C

A

B

D

二、填空题(每小题5分,共30分)

9.84; 10.;  11.45;  12. -6;  13.;  14.;  15.3

三、解答题(共80分.解答题应写出推理、演算步骤)

16. 解:(1) 

的最小正周期,      ……………………………4分

且当单调递增.

的单调递增区间(写成开区间不

扣分).…………6分

(2)当

,即

所以.      ……………9分

的对称轴.      ……12分

17. 解:(1)依题意,的可能取值为1,0,-1      ………1分

的分布列为            …4分

1

0

p

==…………6分

(2)设表示10万元投资乙项目的收益,则的分布列为……8分

2

…………10分

依题意要求…  11分

………12分   

注:只写出扣1分

18. 解:(1)①当直线垂直于轴时,则此时直线方程为与圆的两个交点坐标为,其距离为   满足题意   ………1分

②若直线不垂直于轴,设其方程为,即     

设圆心到此直线的距离为,则,得  …………3分       

,                                    

故所求直线方程为                               

综上所述,所求直线为   …………7分                  

(2)设点的坐标为),点坐标为

点坐标是                       …………9分

  即    …………11分          

又∵,∴                     

 ∴点的轨迹方程是,               …………13分     

轨迹是一个焦点在轴上的椭圆,除去短轴端点。    …………14分     

19.解一:(1)证明:连结AD1,由长方体的性质可知:

AE⊥平面AD1,∴AD1是ED1在

平面AD1内的射影。又∵AD=AA1=1, 

∴AD1⊥A1D   

∴D1E⊥A1D1(三垂线定理)        4分

(2)设AB=x,∵四边形ADD1A是正方形,

∴小蚂蚁从点A沿长方体的表面爬到

点C1可能有两种途径,如图甲的最短路程为

如图乙的最短路程为

   

………………9

(3)假设存在,平面DEC的法向量

设平面D1EC的法向量,则     

…………………12分

由题意得:

解得:(舍去)

………14分

20. 解:(1)当.…(1分)

           ……(3分)

的单调递增区间为(0,1),单调递减区间为:.

……(4分)

(2)切线的斜率为

∴ 切线方程为.……(6分)

            所求封闭图形面积为

.  

……(8分)

(3),     ……(9分)

            令.                         ……(10分)

列表如下:

x

(-∞,0)

0

(0,2-a)

2-a

(2-a,+ ∞)

0

+

0

极小

极大

由表可知,.           ……(12分)

上是增函数,……(13分)

            ∴ ,即

∴不存在实数a,使极大值为3.            ……(14)

21.解:(1)由   而

  解得A=1……………………………………2分

(2)令  

当n=1时,a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n

综合之:an=2n…………………………………………6分

由题意

∴数列{cn+1}是为公比,以为首项的等比数列。

………………………9分

(3)当

………………………11分

………13分

综合之:

………14分

 

 


同步练习册答案