18.已知:(R.a为常数). 查看更多

 

题目列表(包括答案和解析)

(本题满分10分) 已知:Ra为常数).

    (I)若,求fx)的最小正周期及单调减区间;

  (II)若时,fx)的最大值为4,求a的值.

查看答案和解析>>

已知f(x)定义域为R,满足:
①f(1)=1>f(-1);
②对任意实数x,y,有f(y-x+1)=f(x)f(y)+f(x-1)f(y-1).
(Ⅰ)求f(0),f(3)的值;
(Ⅱ)求
12
f(1-6x)+f2(3x)
的值;
(Ⅲ)是否存在常数A,B,使得不等式|f(x)+f(2-x)+Ax+B|≤2对一切实数x成立.如果存在,求出常数A,B的值;如果不存在,请说明理由.

查看答案和解析>>

已知定义在R上的函数f(x)和数列{an}满足下列条件:a1=a,a2≠a1,当n∈N*且n≥2时,an=f(an-1)且f(an)-f(an-1)=k(an-an-1).
其中a、k均为非零常数.
(1)若数列{an}是等差数列,求k的值;
(2)令bn=an+1-an(n∈N*),若b1=1,求数列{bn}的通项公式;
(3)试研究数列{an}为等比数列的条件,并证明你的结论.

查看答案和解析>>

已知定义在R上的函数f(x)=ax3-3x2,其中a为大于零的常数.
(1)当a=
13
时,令h(x)=f′(x)+6x,求证:当x∈(0,+∞)时,h(x)≥2elnx(e为自然对数的底数.)
(2)若函数g(x)=f(x)+f'(x),x∈[0,2],在x=0处取得最大值,求a的取值范围.

查看答案和解析>>

已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|<m|x|,则称f(x)为F函数.给出下列函数:
①f(x)=x2
②f(x)=sinx+cosx;
f(x)=
x
x2+x+1

④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的序号为(  )
A、②④B、①③C、③④D、①②

查看答案和解析>>

1.B 2.(文)B (理)D 3.C 4.B 5.C 6.A 7.(文)A (理)D 

8.D 9.B 10.D 11.A 12.B 13.2

  14.(0,)  15.  16.

  17.解析:恰有3个红球的概率

  有4个红球的概率

  至少有3个红球的概率

  18.解析:∵ 

  (1)最小正周期 

  (2)

  ∴ 时 ,∴ ,  ∴ a=1.

  19.解析:(甲)(1)以DADCDP所在直线分别为x轴、y轴、z轴建立空间坐标系(2,0,0),B(2,2,0),C(0,2,0)设P(0,0,2m(1,1,m), ∴ (-1,1,m),=(0,0,2m

  ∴ 

  ∴ 点E坐标是(1,1,1)

  (2)∵ 平面PAD, ∴ 可设Fx,0,z=(x-1,-1,z-1)

  ∵ EF⊥平面PCB ∴ ,-1,2,0,

  ∵  ∴ ,-1,0,2,-2

  ∴ 点F的坐标是(1,0,0),即点FAD的中点.

  (乙)(1)证明:∵ 是菱形,∠=60°是正三角形

  又∵ 

  

  (2) ∴ ∠BEM为所求二面角的平面角

  △中,60°,Rt△中,60°

  ∴ , ∴ 所求二面角的正切值是2;

  (3)

  20.解析:(1)设fx)图像上任一点坐标为(xy),点(xy)关于点A(0,1)的对称点(-x,2-y)在hx)图像上

  ∴ , ∴ ,即 

  (2)(文):,即在(0,上递减, ∴ a≤-4

  (理):, ∵  在(0,上递减,

  ∴ (0,时恒成立.

  即 (0,时恒成立. ∵ (0,时, ∴

  21.解析:(1)2007年A型车价为32+32×25%=40(万元)

  设B型车每年下降d万元,2002,2003……2007年B型车价格为:(公差为-d

  …… ∴ ≤40×90% ∴ 46-5d≤36 d≥2

  故每年至少下降2万元

  (2)2007年到期时共有钱

  >33(1+0.09+0.00324+……)=36.07692>36(万元)

  故5年到期后这笔钱够买一辆降价后的B型车

  22.解析:(1)如图,以AB所在直线为x轴,AB中垂线为y轴建立直角坐标系,A(-1,0),B(1,0)

  设椭圆方程为:

  令 ∴

  ∴ 椭圆C的方程是:

  (2)(文)lAB时不符合,

  ∴ 设l

  设M),N

  ∵   ∴ ,即

  ∴ l,即 经验证:l与椭圆相交,

  ∴ 存在,lAB的夹角是

  (理)lAB时不符,

  设lykxmk≠0)

  由 

  MN存在D

  设M),N),MN的中点F

  ∴ 

  

  ∴   ∴ 

  ∴   ∴ 

  ∴ lAB的夹角的范围是

 


同步练习册答案