(1)求数列的通项公式, 查看更多

 

题目列表(包括答案和解析)





⑴求数列的通项公式;
⑵设,若恒成立,求实数的取值范围;
⑶是否存在以为首项,公比为的数列,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由

查看答案和解析>>

数列的通项公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述结果推测出计算f(n)的公式,并用数学归纳法加以证明.

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。

   (1)若,求b3

   (2)若,求数列的前2m项和公式;

   (3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

设数列的通项公式为。数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由。

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空题

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答题

15.解:(Ⅰ)由,根据正弦定理得

所以,…………………………………………………………………………………………4分

为锐角三角形得.                 …………………………………………7分

(Ⅱ)根据余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由题意可知

时, .                   ……3分

时,,亦满足上式.                            ……5分

∴数列的通项公式为).                            ……6分

(2)由(1)可知,                                                ……7分

∴数列是以首项为,公比为的等比数列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

18.解:(1)由   …………………2分

……4分

 

函数的单调区间如下表:

(-¥,-

(-,1)

1

(1,+¥)

0

0

­

极大值

¯

极小值

­

所以函数的递增区间是(-¥,-)与(1,+¥),递减区间是(-,1)。      …9分

(2)

时,为极大值,而,则为最大值。

要使恒成立,只需

解得。                                        ……………………14分

19.解:(1)设所求直线的斜率为,其方程为,代入椭圆方程并化简得:

                …………………………2分

        设直线l与椭圆交于P1x1y1)、P2x2y2),则

因为(4,2)是直线l被椭圆所截得的线段的中点,则

,解得。         …………………………………………6分

由点斜式可得l的方程为x+2y-8=0.               ………………………………………8分

(2)由(1)知,     ………………………10分

       ……………14分

 

 

 

 

20. 解:设AN的长为x米(x >2)

             ∵,∴|AM|=

∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

(1)由SAMPN > 32 得  > 32 ,

         ∵x >2,∴,即(3x-8)(x-8)> 0

         ∴         即AN长的取值范围是……………………………8分

(2)令y=,则y′= ……………………………………… 10分

∵当,y′< 0,∴函数y=上为单调递减函数,

∴当x=3时y=取得最大值,即(平方米)

此时|AN|=3米,|AM|=米      ……………………………………………………… 14分