题目列表(包括答案和解析)
【答案】![]()
【解析】设
,有几何意义知
的最小值为
, 又因为存在实数x满足
,所以只要2大于等于f(x)的最小值即可.即
2,解得:
∈
,所以a的取值范围是
.故答案为:
.
答案 -![]()
【解析】数列的通项an=-5n+2,其前n项和为Sn
,则
=-
.
【解析】T,i关系如下图:
| T | 1 |
|
|
|
|
| i | 2 | 3 | 4 | 5 | 6 |
【答案】![]()
该空间几何体为一圆柱和一四棱锥组成的,圆柱的底面半径为1,高为2,体积为
,四棱锥的底面边长为
,高为
,所以体积为![]()
所以该几何体的体积为
.
答案:C
【命题立意】:本题考查了立体几何中的空间想象能力,
由三视图能够想象得到空间的立体图,并能准确地计算出
几何体的体积.
【练】
(1)(2005高考北京卷)已知函数f(x)=-x3+3x2+9x+a, (I)求f(x)的单调递减区间;(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.答案:(1)(-∞,-1),(3,+∞)(2)-7
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com