(3).的系数为: 查看更多

 

题目列表(包括答案和解析)

为了研究高中生参加体育运动与性别之间的关系,在某中学学生中随机抽取了610名学生得到如下联表:
体育运动
性别     
参加 不参加 总计
男生 310 142 452
女生 94 64 158
总计 404 206 610
由表中数据计算知K2≈4.326.那么我们有
95%
95%
的把握认为高中生参加体育运动与性别之间有关.

查看答案和解析>>

为了判断高中学生选读文科是否与性别有关,现随机抽取50名学生,得到如下2×2列联表:
理科    文科     合计
       男      13     10      23
       女      7     20      27
      合计      20     30      50
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025,根据表中数据,得到K2=
50×(13×20-10×7)2
23×27×20×30
≈4.844
,则在犯错误的概率不超过
5%
5%
的前提下可以认为选读文科与性别是有关系的.

查看答案和解析>>

精英家教网为检查某工厂所产8万台电扇的质量,抽查了其中20台的无故障连续使用时限如下:
248  256  232  243  188  268  278  266  289  312
274  296  288  302   295  228  287  217  329  283
(Ⅰ)完成下面(答案卷中)的频率分布表,并在给出的坐标系中作出频率分布直方图.
(Ⅱ)估计8万台电扇中有多少台无故障连续使用时限会超过280小时.
(Ⅲ)用组中值估计样本的平均无故障连续使用时限.

分   组 频数 频率 频率
组距
[180,200)
[200,220)
[220,240)
[240,260)
[260,280)
[280,300)
[300,320)
[320,340]
合  计 0.05

查看答案和解析>>

为了判断某校高中二年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如下2×2列联表:
理科 文科
13 10
7 20
根据表中数据,得到Χ2=
50×(13×20-10×7)2
23×27×20×30
≈4.844
.则认为选修文科与性别有关系出错的可能性为
5%
5%

查看答案和解析>>

为了研究色盲与性别的关系,调查了1000人,调查结果如下表所示:根据上述数据,试问色盲与性别是否是相互独立的?
正常 442 514
色盲 38 6

查看答案和解析>>


同步练习册答案